You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

treeletKernel.py 19 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433
  1. """
  2. @author: linlin
  3. @references:
  4. [1] Gaüzère B, Brun L, Villemin D. Two new graphs kernels in
  5. chemoinformatics. Pattern Recognition Letters. 2012 Nov 1;33(15):2038-47.
  6. """
  7. import sys
  8. sys.path.insert(0, "../")
  9. import time
  10. from collections import Counter
  11. from itertools import chain
  12. from functools import partial
  13. from multiprocessing import Pool
  14. from tqdm import tqdm
  15. import networkx as nx
  16. import numpy as np
  17. from pygraph.utils.graphdataset import get_dataset_attributes
  18. from pygraph.utils.parallel import parallel_gm
  19. def treeletkernel(*args,
  20. sub_kernel,
  21. node_label='atom',
  22. edge_label='bond_type',
  23. n_jobs=None,
  24. verbose=True):
  25. """Calculate treelet graph kernels between graphs.
  26. Parameters
  27. ----------
  28. Gn : List of NetworkX graph
  29. List of graphs between which the kernels are calculated.
  30. /
  31. G1, G2 : NetworkX graphs
  32. Two graphs between which the kernel is calculated.
  33. sub_kernel : function
  34. The sub-kernel between 2 real number vectors. Each vector counts the
  35. numbers of isomorphic treelets in a graph.
  36. node_label : string
  37. Node attribute used as label. The default node label is atom.
  38. edge_label : string
  39. Edge attribute used as label. The default edge label is bond_type.
  40. labeled : boolean
  41. Whether the graphs are labeled. The default is True.
  42. Return
  43. ------
  44. Kmatrix : Numpy matrix
  45. Kernel matrix, each element of which is the treelet kernel between 2 praphs.
  46. """
  47. # pre-process
  48. Gn = args[0] if len(args) == 1 else [args[0], args[1]]
  49. Gn = [g.copy() for g in Gn]
  50. Kmatrix = np.zeros((len(Gn), len(Gn)))
  51. ds_attrs = get_dataset_attributes(Gn,
  52. attr_names=['node_labeled', 'edge_labeled', 'is_directed'],
  53. node_label=node_label, edge_label=edge_label)
  54. labeled = False
  55. if ds_attrs['node_labeled'] or ds_attrs['edge_labeled']:
  56. labeled = True
  57. if not ds_attrs['node_labeled']:
  58. for G in Gn:
  59. nx.set_node_attributes(G, '0', 'atom')
  60. if not ds_attrs['edge_labeled']:
  61. for G in Gn:
  62. nx.set_edge_attributes(G, '0', 'bond_type')
  63. start_time = time.time()
  64. # ---- use pool.imap_unordered to parallel and track progress. ----
  65. # get all canonical keys of all graphs before calculating kernels to save
  66. # time, but this may cost a lot of memory for large dataset.
  67. pool = Pool(n_jobs)
  68. itr = zip(Gn, range(0, len(Gn)))
  69. if len(Gn) < 100 * n_jobs:
  70. chunksize = int(len(Gn) / n_jobs) + 1
  71. else:
  72. chunksize = 100
  73. canonkeys = [[] for _ in range(len(Gn))]
  74. get_partial = partial(wrapper_get_canonkeys, node_label, edge_label,
  75. labeled, ds_attrs['is_directed'])
  76. if verbose:
  77. iterator = tqdm(pool.imap_unordered(get_partial, itr, chunksize),
  78. desc='getting canonkeys', file=sys.stdout)
  79. else:
  80. iterator = pool.imap_unordered(get_partial, itr, chunksize)
  81. for i, ck in iterator:
  82. canonkeys[i] = ck
  83. pool.close()
  84. pool.join()
  85. # compute kernels.
  86. def init_worker(canonkeys_toshare):
  87. global G_canonkeys
  88. G_canonkeys = canonkeys_toshare
  89. do_partial = partial(wrapper_treeletkernel_do, sub_kernel)
  90. parallel_gm(do_partial, Kmatrix, Gn, init_worker=init_worker,
  91. glbv=(canonkeys,), n_jobs=n_jobs, verbose=verbose)
  92. run_time = time.time() - start_time
  93. if verbose:
  94. print("\n --- treelet kernel matrix of size %d built in %s seconds ---"
  95. % (len(Gn), run_time))
  96. return Kmatrix, run_time
  97. def _treeletkernel_do(canonkey1, canonkey2, sub_kernel):
  98. """Calculate treelet graph kernel between 2 graphs.
  99. Parameters
  100. ----------
  101. canonkey1, canonkey2 : list
  102. List of canonical keys in 2 graphs, where each key is represented by a string.
  103. Return
  104. ------
  105. kernel : float
  106. Treelet Kernel between 2 graphs.
  107. """
  108. keys = set(canonkey1.keys()) & set(canonkey2.keys()) # find same canonical keys in both graphs
  109. vector1 = np.array([(canonkey1[key] if (key in canonkey1.keys()) else 0) for key in keys])
  110. vector2 = np.array([(canonkey2[key] if (key in canonkey2.keys()) else 0) for key in keys])
  111. kernel = np.sum(np.exp(-np.square(vector1 - vector2) / 2))
  112. # kernel = sub_kernel(vector1, vector2)
  113. return kernel
  114. def wrapper_treeletkernel_do(sub_kernel, itr):
  115. i = itr[0]
  116. j = itr[1]
  117. return i, j, _treeletkernel_do(G_canonkeys[i], G_canonkeys[j], sub_kernel)
  118. def get_canonkeys(G, node_label, edge_label, labeled, is_directed):
  119. """Generate canonical keys of all treelets in a graph.
  120. Parameters
  121. ----------
  122. G : NetworkX graphs
  123. The graph in which keys are generated.
  124. node_label : string
  125. node attribute used as label. The default node label is atom.
  126. edge_label : string
  127. edge attribute used as label. The default edge label is bond_type.
  128. labeled : boolean
  129. Whether the graphs are labeled. The default is True.
  130. Return
  131. ------
  132. canonkey/canonkey_l : dict
  133. For unlabeled graphs, canonkey is a dictionary which records amount of
  134. every tree pattern. For labeled graphs, canonkey_l is one which keeps
  135. track of amount of every treelet.
  136. """
  137. patterns = {} # a dictionary which consists of lists of patterns for all graphlet.
  138. canonkey = {} # canonical key, a dictionary which records amount of every tree pattern.
  139. ### structural analysis ###
  140. ### In this section, a list of patterns is generated for each graphlet,
  141. ### where every pattern is represented by nodes ordered by Morgan's
  142. ### extended labeling.
  143. # linear patterns
  144. patterns['0'] = G.nodes()
  145. canonkey['0'] = nx.number_of_nodes(G)
  146. for i in range(1, 6): # for i in range(1, 6):
  147. patterns[str(i)] = find_all_paths(G, i, is_directed)
  148. canonkey[str(i)] = len(patterns[str(i)])
  149. # n-star patterns
  150. patterns['3star'] = [[node] + [neighbor for neighbor in G[node]] for node in G.nodes() if G.degree(node) == 3]
  151. patterns['4star'] = [[node] + [neighbor for neighbor in G[node]] for node in G.nodes() if G.degree(node) == 4]
  152. patterns['5star'] = [[node] + [neighbor for neighbor in G[node]] for node in G.nodes() if G.degree(node) == 5]
  153. # n-star patterns
  154. canonkey['6'] = len(patterns['3star'])
  155. canonkey['8'] = len(patterns['4star'])
  156. canonkey['d'] = len(patterns['5star'])
  157. # pattern 7
  158. patterns['7'] = [] # the 1st line of Table 1 in Ref [1]
  159. for pattern in patterns['3star']:
  160. for i in range(1, len(pattern)): # for each neighbor of node 0
  161. if G.degree(pattern[i]) >= 2:
  162. pattern_t = pattern[:]
  163. # set the node with degree >= 2 as the 4th node
  164. pattern_t[i], pattern_t[3] = pattern_t[3], pattern_t[i]
  165. for neighborx in G[pattern[i]]:
  166. if neighborx != pattern[0]:
  167. new_pattern = pattern_t + [neighborx]
  168. patterns['7'].append(new_pattern)
  169. canonkey['7'] = len(patterns['7'])
  170. # pattern 11
  171. patterns['11'] = [] # the 4th line of Table 1 in Ref [1]
  172. for pattern in patterns['4star']:
  173. for i in range(1, len(pattern)):
  174. if G.degree(pattern[i]) >= 2:
  175. pattern_t = pattern[:]
  176. pattern_t[i], pattern_t[4] = pattern_t[4], pattern_t[i]
  177. for neighborx in G[pattern[i]]:
  178. if neighborx != pattern[0]:
  179. new_pattern = pattern_t + [ neighborx ]
  180. patterns['11'].append(new_pattern)
  181. canonkey['b'] = len(patterns['11'])
  182. # pattern 12
  183. patterns['12'] = [] # the 5th line of Table 1 in Ref [1]
  184. rootlist = [] # a list of root nodes, whose extended labels are 3
  185. for pattern in patterns['3star']:
  186. if pattern[0] not in rootlist: # prevent to count the same pattern twice from each of the two root nodes
  187. rootlist.append(pattern[0])
  188. for i in range(1, len(pattern)):
  189. if G.degree(pattern[i]) >= 3:
  190. rootlist.append(pattern[i])
  191. pattern_t = pattern[:]
  192. pattern_t[i], pattern_t[3] = pattern_t[3], pattern_t[i]
  193. for neighborx1 in G[pattern[i]]:
  194. if neighborx1 != pattern[0]:
  195. for neighborx2 in G[pattern[i]]:
  196. if neighborx1 > neighborx2 and neighborx2 != pattern[0]:
  197. new_pattern = pattern_t + [neighborx1] + [neighborx2]
  198. # new_patterns = [ pattern + [neighborx1] + [neighborx2] for neighborx1 in G[pattern[i]] if neighborx1 != pattern[0] for neighborx2 in G[pattern[i]] if (neighborx1 > neighborx2 and neighborx2 != pattern[0]) ]
  199. patterns['12'].append(new_pattern)
  200. canonkey['c'] = int(len(patterns['12']) / 2)
  201. # pattern 9
  202. patterns['9'] = [] # the 2nd line of Table 1 in Ref [1]
  203. for pattern in patterns['3star']:
  204. for pairs in [ [neighbor1, neighbor2] for neighbor1 in G[pattern[0]] if G.degree(neighbor1) >= 2 \
  205. for neighbor2 in G[pattern[0]] if G.degree(neighbor2) >= 2 if neighbor1 > neighbor2 ]:
  206. pattern_t = pattern[:]
  207. # move nodes with extended labels 4 to specific position to correspond to their children
  208. pattern_t[pattern_t.index(pairs[0])], pattern_t[2] = pattern_t[2], pattern_t[pattern_t.index(pairs[0])]
  209. pattern_t[pattern_t.index(pairs[1])], pattern_t[3] = pattern_t[3], pattern_t[pattern_t.index(pairs[1])]
  210. for neighborx1 in G[pairs[0]]:
  211. if neighborx1 != pattern[0]:
  212. for neighborx2 in G[pairs[1]]:
  213. if neighborx2 != pattern[0]:
  214. new_pattern = pattern_t + [neighborx1] + [neighborx2]
  215. patterns['9'].append(new_pattern)
  216. canonkey['9'] = len(patterns['9'])
  217. # pattern 10
  218. patterns['10'] = [] # the 3rd line of Table 1 in Ref [1]
  219. for pattern in patterns['3star']:
  220. for i in range(1, len(pattern)):
  221. if G.degree(pattern[i]) >= 2:
  222. for neighborx in G[pattern[i]]:
  223. if neighborx != pattern[0] and G.degree(neighborx) >= 2:
  224. pattern_t = pattern[:]
  225. pattern_t[i], pattern_t[3] = pattern_t[3], pattern_t[i]
  226. new_patterns = [ pattern_t + [neighborx] + [neighborxx] for neighborxx in G[neighborx] if neighborxx != pattern[i] ]
  227. patterns['10'].extend(new_patterns)
  228. canonkey['a'] = len(patterns['10'])
  229. ### labeling information ###
  230. ### In this section, a list of canonical keys is generated for every
  231. ### pattern obtained in the structural analysis section above, which is a
  232. ### string corresponding to a unique treelet. A dictionary is built to keep
  233. ### track of the amount of every treelet.
  234. if labeled == True:
  235. canonkey_l = {} # canonical key, a dictionary which keeps track of amount of every treelet.
  236. # linear patterns
  237. canonkey_t = Counter(list(nx.get_node_attributes(G, node_label).values()))
  238. for key in canonkey_t:
  239. canonkey_l['0' + key] = canonkey_t[key]
  240. for i in range(1, 6): # for i in range(1, 6):
  241. treelet = []
  242. for pattern in patterns[str(i)]:
  243. canonlist = list(chain.from_iterable((G.node[node][node_label], \
  244. G[node][pattern[idx+1]][edge_label]) for idx, node in enumerate(pattern[:-1])))
  245. canonlist.append(G.node[pattern[-1]][node_label])
  246. canonkey_t = ''.join(canonlist)
  247. canonkey_t = canonkey_t if canonkey_t < canonkey_t[::-1] else canonkey_t[::-1]
  248. treelet.append(str(i) + canonkey_t)
  249. canonkey_l.update(Counter(treelet))
  250. # n-star patterns
  251. for i in range(3, 6):
  252. treelet = []
  253. for pattern in patterns[str(i) + 'star']:
  254. canonlist = [ G.node[leaf][node_label] + G[leaf][pattern[0]][edge_label] for leaf in pattern[1:] ]
  255. canonlist.sort()
  256. canonkey_t = ('d' if i == 5 else str(i * 2)) + G.node[pattern[0]][node_label] + ''.join(canonlist)
  257. treelet.append(canonkey_t)
  258. canonkey_l.update(Counter(treelet))
  259. # pattern 7
  260. treelet = []
  261. for pattern in patterns['7']:
  262. canonlist = [ G.node[leaf][node_label] + G[leaf][pattern[0]][edge_label] for leaf in pattern[1:3] ]
  263. canonlist.sort()
  264. canonkey_t = '7' + G.node[pattern[0]][node_label] + ''.join(canonlist) \
  265. + G.node[pattern[3]][node_label] + G[pattern[3]][pattern[0]][edge_label] \
  266. + G.node[pattern[4]][node_label] + G[pattern[4]][pattern[3]][edge_label]
  267. treelet.append(canonkey_t)
  268. canonkey_l.update(Counter(treelet))
  269. # pattern 11
  270. treelet = []
  271. for pattern in patterns['11']:
  272. canonlist = [ G.node[leaf][node_label] + G[leaf][pattern[0]][edge_label] for leaf in pattern[1:4] ]
  273. canonlist.sort()
  274. canonkey_t = 'b' + G.node[pattern[0]][node_label] + ''.join(canonlist) \
  275. + G.node[pattern[4]][node_label] + G[pattern[4]][pattern[0]][edge_label] \
  276. + G.node[pattern[5]][node_label] + G[pattern[5]][pattern[4]][edge_label]
  277. treelet.append(canonkey_t)
  278. canonkey_l.update(Counter(treelet))
  279. # pattern 10
  280. treelet = []
  281. for pattern in patterns['10']:
  282. canonkey4 = G.node[pattern[5]][node_label] + G[pattern[5]][pattern[4]][edge_label]
  283. canonlist = [ G.node[leaf][node_label] + G[leaf][pattern[0]][edge_label] for leaf in pattern[1:3] ]
  284. canonlist.sort()
  285. canonkey0 = ''.join(canonlist)
  286. canonkey_t = 'a' + G.node[pattern[3]][node_label] \
  287. + G.node[pattern[4]][node_label] + G[pattern[4]][pattern[3]][edge_label] \
  288. + G.node[pattern[0]][node_label] + G[pattern[0]][pattern[3]][edge_label] \
  289. + canonkey4 + canonkey0
  290. treelet.append(canonkey_t)
  291. canonkey_l.update(Counter(treelet))
  292. # pattern 12
  293. treelet = []
  294. for pattern in patterns['12']:
  295. canonlist0 = [ G.node[leaf][node_label] + G[leaf][pattern[0]][edge_label] for leaf in pattern[1:3] ]
  296. canonlist0.sort()
  297. canonlist3 = [ G.node[leaf][node_label] + G[leaf][pattern[3]][edge_label] for leaf in pattern[4:6] ]
  298. canonlist3.sort()
  299. # 2 possible key can be generated from 2 nodes with extended label 3, select the one with lower lexicographic order.
  300. canonkey_t1 = 'c' + G.node[pattern[0]][node_label] \
  301. + ''.join(canonlist0) \
  302. + G.node[pattern[3]][node_label] + G[pattern[3]][pattern[0]][edge_label] \
  303. + ''.join(canonlist3)
  304. canonkey_t2 = 'c' + G.node[pattern[3]][node_label] \
  305. + ''.join(canonlist3) \
  306. + G.node[pattern[0]][node_label] + G[pattern[0]][pattern[3]][edge_label] \
  307. + ''.join(canonlist0)
  308. treelet.append(canonkey_t1 if canonkey_t1 < canonkey_t2 else canonkey_t2)
  309. canonkey_l.update(Counter(treelet))
  310. # pattern 9
  311. treelet = []
  312. for pattern in patterns['9']:
  313. canonkey2 = G.node[pattern[4]][node_label] + G[pattern[4]][pattern[2]][edge_label]
  314. canonkey3 = G.node[pattern[5]][node_label] + G[pattern[5]][pattern[3]][edge_label]
  315. prekey2 = G.node[pattern[2]][node_label] + G[pattern[2]][pattern[0]][edge_label]
  316. prekey3 = G.node[pattern[3]][node_label] + G[pattern[3]][pattern[0]][edge_label]
  317. if prekey2 + canonkey2 < prekey3 + canonkey3:
  318. canonkey_t = G.node[pattern[1]][node_label] + G[pattern[1]][pattern[0]][edge_label] \
  319. + prekey2 + prekey3 + canonkey2 + canonkey3
  320. else:
  321. canonkey_t = G.node[pattern[1]][node_label] + G[pattern[1]][pattern[0]][edge_label] \
  322. + prekey3 + prekey2 + canonkey3 + canonkey2
  323. treelet.append('9' + G.node[pattern[0]][node_label] + canonkey_t)
  324. canonkey_l.update(Counter(treelet))
  325. return canonkey_l
  326. return canonkey
  327. def wrapper_get_canonkeys(node_label, edge_label, labeled, is_directed, itr_item):
  328. g = itr_item[0]
  329. i = itr_item[1]
  330. return i, get_canonkeys(g, node_label, edge_label, labeled, is_directed)
  331. def find_paths(G, source_node, length):
  332. """Find all paths with a certain length those start from a source node.
  333. A recursive depth first search is applied.
  334. Parameters
  335. ----------
  336. G : NetworkX graphs
  337. The graph in which paths are searched.
  338. source_node : integer
  339. The number of the node from where all paths start.
  340. length : integer
  341. The length of paths.
  342. Return
  343. ------
  344. path : list of list
  345. List of paths retrieved, where each path is represented by a list of nodes.
  346. """
  347. if length == 0:
  348. return [[source_node]]
  349. path = [[source_node] + path for neighbor in G[source_node] \
  350. for path in find_paths(G, neighbor, length - 1) if source_node not in path]
  351. return path
  352. def find_all_paths(G, length, is_directed):
  353. """Find all paths with a certain length in a graph. A recursive depth first
  354. search is applied.
  355. Parameters
  356. ----------
  357. G : NetworkX graphs
  358. The graph in which paths are searched.
  359. length : integer
  360. The length of paths.
  361. Return
  362. ------
  363. path : list of list
  364. List of paths retrieved, where each path is represented by a list of nodes.
  365. """
  366. all_paths = []
  367. for node in G:
  368. all_paths.extend(find_paths(G, node, length))
  369. if not is_directed:
  370. # For each path, two presentations are retrieved from its two extremities.
  371. # Remove one of them.
  372. all_paths_r = [path[::-1] for path in all_paths]
  373. for idx, path in enumerate(all_paths[:-1]):
  374. for path2 in all_paths_r[idx+1::]:
  375. if path == path2:
  376. all_paths[idx] = []
  377. break
  378. all_paths = list(filter(lambda a: a != [], all_paths))
  379. return all_paths

A Python package for graph kernels, graph edit distances and graph pre-image problem.