| @@ -8,10 +8,8 @@ Created on Fri Sep 28 17:01:13 2018 | |||
| from libs import * | |||
| import multiprocessing | |||
| from sklearn.metrics.pairwise import rbf_kernel | |||
| from pygraph.kernels.commonWalkKernel import commonwalkkernel | |||
| from pygraph.utils.kernels import deltakernel, kernelproduct | |||
| dslist = [ | |||
| {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', | |||
| @@ -0,0 +1,83 @@ | |||
| #!/usr/bin/env python3 | |||
| # -*- coding: utf-8 -*- | |||
| """ | |||
| Created on Fri Oct 5 19:19:33 2018 | |||
| @author: ljia | |||
| """ | |||
| from libs import * | |||
| import multiprocessing | |||
| from pygraph.kernels.treeletKernel import treeletkernel | |||
| from pygraph.utils.kernels import gaussiankernel, polynomialkernel | |||
| dslist = [ | |||
| {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', | |||
| 'task': 'regression'}, # node symb | |||
| {'name': 'Alkane', 'dataset': '../datasets/Alkane/dataset.ds', 'task': 'regression', | |||
| 'dataset_y': '../datasets/Alkane/dataset_boiling_point_names.txt', }, | |||
| # contains single node graph, node symb | |||
| {'name': 'MAO', 'dataset': '../datasets/MAO/dataset.ds', }, # node/edge symb | |||
| {'name': 'PAH', 'dataset': '../datasets/PAH/dataset.ds', }, # unlabeled | |||
| {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG.mat', | |||
| 'extra_params': {'am_sp_al_nl_el': [0, 0, 3, 1, 2]}}, # node/edge symb | |||
| # {'name': 'Letter-med', 'dataset': '../datasets/Letter-med/Letter-med_A.txt'}, | |||
| # # node nsymb | |||
| {'name': 'ENZYMES', 'dataset': '../datasets/ENZYMES_txt/ENZYMES_A_sparse.txt'}, | |||
| # node symb/nsymb | |||
| # {'name': 'Mutagenicity', 'dataset': '../datasets/Mutagenicity/Mutagenicity_A.txt'}, | |||
| # # node/edge symb | |||
| # {'name': 'D&D', 'dataset': '../datasets/D&D/DD.mat', | |||
| # 'extra_params': {'am_sp_al_nl_el': [0, 1, 2, 1, -1]}}, # node symb | |||
| # {'name': 'COIL-DEL', 'dataset': '../datasets/COIL-DEL/COIL-DEL_A.txt'}, # edge symb, node nsymb | |||
| # # # {'name': 'BZR', 'dataset': '../datasets/BZR_txt/BZR_A_sparse.txt'}, # node symb/nsymb | |||
| # # # {'name': 'COX2', 'dataset': '../datasets/COX2_txt/COX2_A_sparse.txt'}, # node symb/nsymb | |||
| # {'name': 'Fingerprint', 'dataset': '../datasets/Fingerprint/Fingerprint_A.txt'}, | |||
| # | |||
| # # {'name': 'DHFR', 'dataset': '../datasets/DHFR_txt/DHFR_A_sparse.txt'}, # node symb/nsymb | |||
| # # {'name': 'SYNTHETIC', 'dataset': '../datasets/SYNTHETIC_txt/SYNTHETIC_A_sparse.txt'}, # node symb/nsymb | |||
| # # {'name': 'MSRC9', 'dataset': '../datasets/MSRC_9_txt/MSRC_9_A.txt'}, # node symb | |||
| # # {'name': 'MSRC21', 'dataset': '../datasets/MSRC_21_txt/MSRC_21_A.txt'}, # node symb | |||
| # # {'name': 'FIRSTMM_DB', 'dataset': '../datasets/FIRSTMM_DB/FIRSTMM_DB_A.txt'}, # node symb/nsymb ,edge nsymb | |||
| # # {'name': 'PROTEINS', 'dataset': '../datasets/PROTEINS_txt/PROTEINS_A_sparse.txt'}, # node symb/nsymb | |||
| # # {'name': 'PROTEINS_full', 'dataset': '../datasets/PROTEINS_full_txt/PROTEINS_full_A_sparse.txt'}, # node symb/nsymb | |||
| {'name': 'AIDS', 'dataset': '../datasets/AIDS/AIDS_A.txt'}, # node symb/nsymb, edge symb | |||
| # {'name': 'NCI1', 'dataset': '../datasets/NCI1/NCI1.mat', | |||
| # 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb | |||
| # {'name': 'NCI109', 'dataset': '../datasets/NCI109/NCI109.mat', | |||
| # 'extra_params': {'am_sp_al_nl_el': [1, 1, 2, 0, -1]}}, # node symb | |||
| # {'name': 'NCI-HIV', 'dataset': '../datasets/NCI-HIV/AIDO99SD.sdf', | |||
| # 'dataset_y': '../datasets/NCI-HIV/aids_conc_may04.txt',}, # node/edge symb | |||
| # # not working below | |||
| # {'name': 'PTC_FM', 'dataset': '../datasets/PTC/Train/FM.ds',}, | |||
| # {'name': 'PTC_FR', 'dataset': '../datasets/PTC/Train/FR.ds',}, | |||
| # {'name': 'PTC_MM', 'dataset': '../datasets/PTC/Train/MM.ds',}, | |||
| # {'name': 'PTC_MR', 'dataset': '../datasets/PTC/Train/MR.ds',}, | |||
| ] | |||
| estimator = treeletkernel | |||
| param_grid_precomputed = {'sub_kernel': [gaussiankernel, polynomialkernel]} | |||
| param_grid = [{'C': np.logspace(-10, 10, num=41, base=10)}, | |||
| {'alpha': np.logspace(-10, 10, num=41, base=10)}] | |||
| for ds in dslist: | |||
| print() | |||
| print(ds['name']) | |||
| model_selection_for_precomputed_kernel( | |||
| ds['dataset'], | |||
| estimator, | |||
| param_grid_precomputed, | |||
| (param_grid[1] if ('task' in ds and ds['task'] | |||
| == 'regression') else param_grid[0]), | |||
| (ds['task'] if 'task' in ds else 'classification'), | |||
| NUM_TRIALS=30, | |||
| datafile_y=(ds['dataset_y'] if 'dataset_y' in ds else None), | |||
| extra_params=(ds['extra_params'] if 'extra_params' in ds else None), | |||
| ds_name=ds['name'], | |||
| n_jobs=multiprocessing.cpu_count(), | |||
| read_gm_from_file=False, | |||
| verbose=True) | |||
| print() | |||
| @@ -10,7 +10,6 @@ from libs import * | |||
| import multiprocessing | |||
| from pygraph.kernels.untilHPathKernel import untilhpathkernel | |||
| from pygraph.utils.kernels import deltakernel, kernelproduct | |||
| dslist = [ | |||
| {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', | |||
| @@ -11,13 +11,17 @@ and the iterative alternate minimizations (IAM) in reference [2]. | |||
| pre-images. In Joint Pattern Re ognition Symposium , pages 253-261. Springer, 2004. | |||
| [2] Generalized median graph via iterative alternate minimization. | |||
| """ | |||
| import sys | |||
| import numpy as np | |||
| import multiprocessing | |||
| from tqdm import tqdm | |||
| import networkx as nx | |||
| import matplotlib.pyplot as plt | |||
| from iam import iam | |||
| from iam import iam, test_iam_with_more_graphs_as_init, test_iam_moreGraphsAsInit_tryAllPossibleBestGraphs_deleteNodesInIterations | |||
| sys.path.insert(0, "../") | |||
| from pygraph.kernels.marginalizedKernel import marginalizedkernel | |||
| from pygraph.kernels.untilHPathKernel import untilhpathkernel | |||
| def gk_iam(Gn, alpha): | |||
| @@ -29,58 +33,59 @@ def gk_iam(Gn, alpha): | |||
| ----- | |||
| Every time a better graph is acquired, the older one is replaced by it. | |||
| """ | |||
| # compute k nearest neighbors of phi in DN. | |||
| dis_list = [] # distance between g_star and each graph. | |||
| for ig, g in tqdm(enumerate(Gn), desc='computing distances', file=sys.stdout): | |||
| dtemp = k_list[ig] - 2 * (alpha * k_g1_list[ig] + (1 - alpha) * | |||
| k_g2_list[ig]) + (alpha * alpha * k_list[idx1] + alpha * | |||
| (1 - alpha) * k_g2_list[idx1] + (1 - alpha) * alpha * | |||
| k_g1_list[idx2] + (1 - alpha) * (1 - alpha) * k_list[idx2]) | |||
| dis_list.append(dtemp) | |||
| # sort | |||
| sort_idx = np.argsort(dis_list) | |||
| dis_gs = [dis_list[idis] for idis in sort_idx[0:k]] | |||
| g0hat = Gn[sort_idx[0]] # the nearest neighbor of phi in DN | |||
| if dis_gs[0] == 0: # the exact pre-image. | |||
| print('The exact pre-image is found from the input dataset.') | |||
| return 0, g0hat | |||
| dhat = dis_gs[0] # the nearest distance | |||
| Gk = [Gn[ig] for ig in sort_idx[0:k]] # the k nearest neighbors | |||
| gihat_list = [] | |||
| # i = 1 | |||
| r = 1 | |||
| while r < r_max: | |||
| print('r =', r) | |||
| # found = False | |||
| Gs_nearest = Gk + gihat_list | |||
| g_tmp = iam(Gs_nearest) | |||
| # compute distance between phi and the new generated graph. | |||
| knew = marginalizedkernel([g_tmp, g1, g2], node_label='atom', edge_label=None, | |||
| p_quit=lmbda, n_iteration=20, remove_totters=False, | |||
| n_jobs=multiprocessing.cpu_count(), verbose=False) | |||
| dnew = knew[0][0, 0] - 2 * (alpha * knew[0][0, 1] + (1 - alpha) * | |||
| knew[0][0, 2]) + (alpha * alpha * k_list[idx1] + alpha * | |||
| (1 - alpha) * k_g2_list[idx1] + (1 - alpha) * alpha * | |||
| k_g1_list[idx2] + (1 - alpha) * (1 - alpha) * k_list[idx2]) | |||
| if dnew <= dhat: # the new distance is smaller | |||
| print('I am smaller!') | |||
| dhat = dnew | |||
| g_new = g_tmp.copy() # found better graph. | |||
| gihat_list = [g_new] | |||
| dis_gs.append(dhat) | |||
| r = 0 | |||
| else: | |||
| r += 1 | |||
| ghat = ([g0hat] if len(gihat_list) == 0 else gihat_list) | |||
| return dhat, ghat | |||
| pass | |||
| # # compute k nearest neighbors of phi in DN. | |||
| # dis_list = [] # distance between g_star and each graph. | |||
| # for ig, g in tqdm(enumerate(Gn), desc='computing distances', file=sys.stdout): | |||
| # dtemp = k_list[ig] - 2 * (alpha * k_g1_list[ig] + (1 - alpha) * | |||
| # k_g2_list[ig]) + (alpha * alpha * k_list[idx1] + alpha * | |||
| # (1 - alpha) * k_g2_list[idx1] + (1 - alpha) * alpha * | |||
| # k_g1_list[idx2] + (1 - alpha) * (1 - alpha) * k_list[idx2]) | |||
| # dis_list.append(dtemp) | |||
| # | |||
| # # sort | |||
| # sort_idx = np.argsort(dis_list) | |||
| # dis_gs = [dis_list[idis] for idis in sort_idx[0:k]] | |||
| # g0hat = Gn[sort_idx[0]] # the nearest neighbor of phi in DN | |||
| # if dis_gs[0] == 0: # the exact pre-image. | |||
| # print('The exact pre-image is found from the input dataset.') | |||
| # return 0, g0hat | |||
| # dhat = dis_gs[0] # the nearest distance | |||
| # Gk = [Gn[ig] for ig in sort_idx[0:k]] # the k nearest neighbors | |||
| # gihat_list = [] | |||
| # | |||
| ## i = 1 | |||
| # r = 1 | |||
| # while r < r_max: | |||
| # print('r =', r) | |||
| ## found = False | |||
| # Gs_nearest = Gk + gihat_list | |||
| # g_tmp = iam(Gs_nearest) | |||
| # | |||
| # # compute distance between phi and the new generated graph. | |||
| # knew = marginalizedkernel([g_tmp, g1, g2], node_label='atom', edge_label=None, | |||
| # p_quit=lmbda, n_iteration=20, remove_totters=False, | |||
| # n_jobs=multiprocessing.cpu_count(), verbose=False) | |||
| # dnew = knew[0][0, 0] - 2 * (alpha * knew[0][0, 1] + (1 - alpha) * | |||
| # knew[0][0, 2]) + (alpha * alpha * k_list[idx1] + alpha * | |||
| # (1 - alpha) * k_g2_list[idx1] + (1 - alpha) * alpha * | |||
| # k_g1_list[idx2] + (1 - alpha) * (1 - alpha) * k_list[idx2]) | |||
| # if dnew <= dhat: # the new distance is smaller | |||
| # print('I am smaller!') | |||
| # dhat = dnew | |||
| # g_new = g_tmp.copy() # found better graph. | |||
| # gihat_list = [g_new] | |||
| # dis_gs.append(dhat) | |||
| # r = 0 | |||
| # else: | |||
| # r += 1 | |||
| # | |||
| # ghat = ([g0hat] if len(gihat_list) == 0 else gihat_list) | |||
| # | |||
| # return dhat, ghat | |||
| def gk_iam_nearest(Gn, alpha): | |||
| def gk_iam_nearest(Gn, alpha, idx_gi, Kmatrix, k, r_max): | |||
| """This function constructs graph pre-image by the iterative pre-image | |||
| framework in reference [1], algorithm 1, where the step of generating new | |||
| graphs randomly is replaced by the IAM algorithm in reference [2]. | |||
| @@ -94,10 +99,11 @@ def gk_iam_nearest(Gn, alpha): | |||
| # compute k nearest neighbors of phi in DN. | |||
| dis_list = [] # distance between g_star and each graph. | |||
| for ig, g in tqdm(enumerate(Gn), desc='computing distances', file=sys.stdout): | |||
| dtemp = k_list[ig] - 2 * (alpha * k_g1_list[ig] + (1 - alpha) * | |||
| k_g2_list[ig]) + (alpha * alpha * k_list[idx1] + alpha * | |||
| (1 - alpha) * k_g2_list[idx1] + (1 - alpha) * alpha * | |||
| k_g1_list[idx2] + (1 - alpha) * (1 - alpha) * k_list[idx2]) | |||
| dtemp = dis_gstar(ig, idx_gi, alpha, Kmatrix) | |||
| # dtemp = k_list[ig] - 2 * (alpha * k_g1_list[ig] + (1 - alpha) * | |||
| # k_g2_list[ig]) + (alpha * alpha * k_list[0] + alpha * | |||
| # (1 - alpha) * k_g2_list[0] + (1 - alpha) * alpha * | |||
| # k_g1_list[6] + (1 - alpha) * (1 - alpha) * k_list[6]) | |||
| dis_list.append(dtemp) | |||
| # sort | |||
| @@ -108,9 +114,12 @@ def gk_iam_nearest(Gn, alpha): | |||
| print('The exact pre-image is found from the input dataset.') | |||
| return 0, g0hat | |||
| dhat = dis_gs[0] # the nearest distance | |||
| ghat = g0hat | |||
| Gk = [Gn[ig] for ig in sort_idx[0:k]] # the k nearest neighbors | |||
| Gs_nearest = Gk | |||
| ghat = g0hat.copy() | |||
| Gk = [Gn[ig].copy() for ig in sort_idx[0:k]] # the k nearest neighbors | |||
| for gi in Gk: | |||
| nx.draw_networkx(gi) | |||
| plt.show() | |||
| Gs_nearest = Gk.copy() | |||
| # gihat_list = [] | |||
| # i = 1 | |||
| @@ -119,18 +128,29 @@ def gk_iam_nearest(Gn, alpha): | |||
| print('r =', r) | |||
| # found = False | |||
| # Gs_nearest = Gk + gihat_list | |||
| g_tmp = iam(Gs_nearest) | |||
| # g_tmp = iam(Gs_nearest) | |||
| g_tmp = test_iam_with_more_graphs_as_init(Gs_nearest, Gs_nearest, c_ei=1, c_er=1, c_es=1) | |||
| nx.draw_networkx(g_tmp) | |||
| plt.show() | |||
| # compute distance between phi and the new generated graph. | |||
| knew = marginalizedkernel([g_tmp, g1, g2], node_label='atom', edge_label=None, | |||
| p_quit=lmbda, n_iteration=20, remove_totters=False, | |||
| n_jobs=multiprocessing.cpu_count(), verbose=False) | |||
| dnew = knew[0][0, 0] - 2 * (alpha * knew[0][0, 1] + (1 - alpha) * | |||
| knew[0][0, 2]) + (alpha * alpha * k_list[idx1] + alpha * | |||
| (1 - alpha) * k_g2_list[idx1] + (1 - alpha) * alpha * | |||
| k_g1_list[idx2] + (1 - alpha) * (1 - alpha) * k_list[idx2]) | |||
| if dnew <= dhat: # the new distance is smaller | |||
| gi_list = [Gn[i] for i in idx_gi] | |||
| knew = compute_kernel([g_tmp] + gi_list, 'untilhpathkernel', False) | |||
| dnew = dis_gstar(0, range(1, len(gi_list) + 1), alpha, knew) | |||
| # dnew = knew[0, 0] - 2 * (alpha[0] * knew[0, 1] + alpha[1] * | |||
| # knew[0, 2]) + (alpha[0] * alpha[0] * k_list[0] + alpha[0] * | |||
| # alpha[1] * k_g2_list[0] + alpha[1] * alpha[0] * | |||
| # k_g1_list[1] + alpha[1] * alpha[1] * k_list[1]) | |||
| if dnew <= dhat and g_tmp != ghat: # the new distance is smaller | |||
| print('I am smaller!') | |||
| print(str(dhat) + '->' + str(dnew)) | |||
| # nx.draw_networkx(ghat) | |||
| # plt.show() | |||
| # print('->') | |||
| # nx.draw_networkx(g_tmp) | |||
| # plt.show() | |||
| dhat = dnew | |||
| g_new = g_tmp.copy() # found better graph. | |||
| ghat = g_tmp.copy() | |||
| @@ -144,48 +164,205 @@ def gk_iam_nearest(Gn, alpha): | |||
| r += 1 | |||
| return dhat, ghat | |||
| def dis_gstar(idx_g, idx_gi, alpha, Kmatrix): | |||
| term1 = Kmatrix[idx_g, idx_g] | |||
| term2 = 0 | |||
| for i, a in enumerate(alpha): | |||
| term2 += a * Kmatrix[idx_g, idx_gi[i]] | |||
| term2 *= 2 | |||
| term3 = 0 | |||
| for i1, a1 in enumerate(alpha): | |||
| for i2, a2 in enumerate(alpha): | |||
| term3 += a1 * a2 * Kmatrix[idx_gi[i1], idx_gi[i2]] | |||
| return np.sqrt(term1 - term2 + term3) | |||
| def compute_kernel(Gn, graph_kernel, verbose): | |||
| if graph_kernel == 'marginalizedkernel': | |||
| Kmatrix, _ = marginalizedkernel(Gn, node_label='atom', edge_label=None, | |||
| p_quit=0.3, n_iteration=19, remove_totters=False, | |||
| n_jobs=multiprocessing.cpu_count(), verbose=verbose) | |||
| elif graph_kernel == 'untilhpathkernel': | |||
| Kmatrix, _ = untilhpathkernel(Gn, node_label='atom', edge_label='bond_type', | |||
| depth=2, k_func='MinMax', compute_method='trie', | |||
| n_jobs=multiprocessing.cpu_count(), verbose=verbose) | |||
| # normalization | |||
| Kmatrix_diag = Kmatrix.diagonal().copy() | |||
| for i in range(len(Kmatrix)): | |||
| for j in range(i, len(Kmatrix)): | |||
| Kmatrix[i][j] /= np.sqrt(Kmatrix_diag[i] * Kmatrix_diag[j]) | |||
| Kmatrix[j][i] = Kmatrix[i][j] | |||
| return Kmatrix | |||
| def gram2distances(Kmatrix): | |||
| dmatrix = np.zeros((len(Kmatrix), len(Kmatrix))) | |||
| for i1 in range(len(Kmatrix)): | |||
| for i2 in range(len(Kmatrix)): | |||
| dmatrix[i1, i2] = Kmatrix[i1, i1] + Kmatrix[i2, i2] - 2 * Kmatrix[i1, i2] | |||
| dmatrix = np.sqrt(dmatrix) | |||
| return dmatrix | |||
| # --------------------------- These are tests --------------------------------# | |||
| def test_who_is_the_closest_in_kernel_space(Gn): | |||
| idx_gi = [0, 6] | |||
| g1 = Gn[idx_gi[0]] | |||
| g2 = Gn[idx_gi[1]] | |||
| # create the "median" graph. | |||
| gnew = g2.copy() | |||
| gnew.remove_node(0) | |||
| nx.draw_networkx(gnew) | |||
| plt.show() | |||
| print(gnew.nodes(data=True)) | |||
| Gn = [gnew] + Gn | |||
| # compute gram matrix | |||
| Kmatrix = compute_kernel(Gn, 'untilhpathkernel', True) | |||
| # the distance matrix | |||
| dmatrix = gram2distances(Kmatrix) | |||
| print(np.sort(dmatrix[idx_gi[0] + 1])) | |||
| print(np.argsort(dmatrix[idx_gi[0] + 1])) | |||
| print(np.sort(dmatrix[idx_gi[1] + 1])) | |||
| print(np.argsort(dmatrix[idx_gi[1] + 1])) | |||
| # for all g in Gn, compute (d(g1, g) + d(g2, g)) / 2 | |||
| dis_median = [(dmatrix[i, idx_gi[0] + 1] + dmatrix[i, idx_gi[1] + 1]) / 2 for i in range(len(Gn))] | |||
| print(np.sort(dis_median)) | |||
| print(np.argsort(dis_median)) | |||
| return | |||
| def test_who_is_the_closest_in_GED_space(Gn): | |||
| from iam import GED | |||
| idx_gi = [0, 6] | |||
| g1 = Gn[idx_gi[0]] | |||
| g2 = Gn[idx_gi[1]] | |||
| # create the "median" graph. | |||
| gnew = g2.copy() | |||
| gnew.remove_node(0) | |||
| nx.draw_networkx(gnew) | |||
| plt.show() | |||
| print(gnew.nodes(data=True)) | |||
| Gn = [gnew] + Gn | |||
| # compute GEDs | |||
| ged_matrix = np.zeros((len(Gn), len(Gn))) | |||
| for i1 in tqdm(range(len(Gn)), desc='computing GEDs', file=sys.stdout): | |||
| for i2 in range(len(Gn)): | |||
| dis, _, _ = GED(Gn[i1], Gn[i2], lib='gedlib') | |||
| ged_matrix[i1, i2] = dis | |||
| print(np.sort(ged_matrix[idx_gi[0] + 1])) | |||
| print(np.argsort(ged_matrix[idx_gi[0] + 1])) | |||
| print(np.sort(ged_matrix[idx_gi[1] + 1])) | |||
| print(np.argsort(ged_matrix[idx_gi[1] + 1])) | |||
| # for all g in Gn, compute (GED(g1, g) + GED(g2, g)) / 2 | |||
| dis_median = [(ged_matrix[i, idx_gi[0] + 1] + ged_matrix[i, idx_gi[1] + 1]) / 2 for i in range(len(Gn))] | |||
| print(np.sort(dis_median)) | |||
| print(np.argsort(dis_median)) | |||
| return | |||
| def test_will_IAM_give_the_median_graph_we_wanted(Gn): | |||
| idx_gi = [0, 6] | |||
| g1 = Gn[idx_gi[0]].copy() | |||
| g2 = Gn[idx_gi[1]].copy() | |||
| # del Gn[idx_gi[0]] | |||
| # del Gn[idx_gi[1] - 1] | |||
| g_median = test_iam_with_more_graphs_as_init([g1, g2], [g1, g2], c_ei=1, c_er=1, c_es=1) | |||
| # g_median = test_iam_with_more_graphs_as_init(Gn, Gn, c_ei=1, c_er=1, c_es=1) | |||
| nx.draw_networkx(g_median) | |||
| plt.show() | |||
| print(g_median.nodes(data=True)) | |||
| print(g_median.edges(data=True)) | |||
| def test_new_IAM_allGraph_deleteNodes(Gn): | |||
| idx_gi = [0, 6] | |||
| # g1 = Gn[idx_gi[0]].copy() | |||
| # g2 = Gn[idx_gi[1]].copy() | |||
| g1 = nx.Graph(name='haha') | |||
| g1.add_nodes_from([(2, {'atom': 'C'}), (3, {'atom': 'O'}), (4, {'atom': 'C'})]) | |||
| g1.add_edges_from([(2, 3, {'bond_type': '1'}), (3, 4, {'bond_type': '1'})]) | |||
| g2 = nx.Graph(name='hahaha') | |||
| g2.add_nodes_from([(0, {'atom': 'C'}), (1, {'atom': 'O'}), (2, {'atom': 'C'}), | |||
| (3, {'atom': 'O'}), (4, {'atom': 'C'})]) | |||
| g2.add_edges_from([(0, 1, {'bond_type': '1'}), (1, 2, {'bond_type': '1'}), | |||
| (2, 3, {'bond_type': '1'}), (3, 4, {'bond_type': '1'})]) | |||
| # g2 = g1.copy() | |||
| # g2.add_nodes_from([(3, {'atom': 'O'})]) | |||
| # g2.add_nodes_from([(4, {'atom': 'C'})]) | |||
| # g2.add_edges_from([(1, 3, {'bond_type': '1'})]) | |||
| # g2.add_edges_from([(3, 4, {'bond_type': '1'})]) | |||
| # del Gn[idx_gi[0]] | |||
| # del Gn[idx_gi[1] - 1] | |||
| g_median = test_iam_moreGraphsAsInit_tryAllPossibleBestGraphs_deleteNodesInIterations([g1, g2], [g1, g2], c_ei=1, c_er=1, c_es=1) | |||
| # g_median = test_iam_moreGraphsAsInit_tryAllPossibleBestGraphs_deleteNodesInIterations(Gn, Gn, c_ei=1, c_er=1, c_es=1) | |||
| nx.draw_networkx(g_median) | |||
| plt.show() | |||
| print(g_median.nodes(data=True)) | |||
| print(g_median.edges(data=True)) | |||
| if __name__ == '__main__': | |||
| import sys | |||
| sys.path.insert(0, "../") | |||
| from pygraph.kernels.marginalizedKernel import marginalizedkernel | |||
| from pygraph.utils.graphfiles import loadDataset | |||
| ds = {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG.mat', | |||
| 'extra_params': {'am_sp_al_nl_el': [0, 0, 3, 1, 2]}} # node/edge symb | |||
| # ds = {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG.mat', | |||
| # 'extra_params': {'am_sp_al_nl_el': [0, 0, 3, 1, 2]}} # node/edge symb | |||
| # ds = {'name': 'Letter-high', 'dataset': '../datasets/Letter-high/Letter-high_A.txt', | |||
| # 'extra_params': {}} # node nsymb | |||
| # ds = {'name': 'Acyclic', 'dataset': '../datasets/monoterpenoides/trainset_9.ds', | |||
| # 'extra_params': {}} | |||
| ds = {'name': 'Acyclic', 'dataset': '../datasets/acyclic/dataset_bps.ds', | |||
| 'extra_params': {}} # node symb | |||
| Gn, y_all = loadDataset(ds['dataset'], extra_params=ds['extra_params']) | |||
| # Gn = Gn[0:10] | |||
| # Gn = Gn[0:20] | |||
| test_new_IAM_allGraph_deleteNodes(Gn) | |||
| test_will_IAM_give_the_median_graph_we_wanted(Gn) | |||
| test_who_is_the_closest_in_GED_space(Gn) | |||
| test_who_is_the_closest_in_kernel_space(Gn) | |||
| lmbda = 0.03 # termination probalility | |||
| r_max = 10 # recursions | |||
| l = 500 | |||
| alpha_range = np.linspace(0.1, 0.9, 9) | |||
| k = 5 # k nearest neighbors | |||
| alpha_range = np.linspace(0.5, 0.5, 1) | |||
| k = 20 # k nearest neighbors | |||
| # randomly select two molecules | |||
| np.random.seed(1) | |||
| idx1, idx2 = np.random.randint(0, len(Gn), 2) | |||
| g1 = Gn[idx1] | |||
| g2 = Gn[idx2] | |||
| idx_gi = [0, 6] # np.random.randint(0, len(Gn), 2) | |||
| g1 = Gn[idx_gi[0]] | |||
| g2 = Gn[idx_gi[1]] | |||
| # g_tmp = iam([g1, g2]) | |||
| # nx.draw_networkx(g_tmp) | |||
| # plt.show() | |||
| # compute | |||
| k_list = [] # kernel between each graph and itself. | |||
| k_g1_list = [] # kernel between each graph and g1 | |||
| k_g2_list = [] # kernel between each graph and g2 | |||
| for ig, g in tqdm(enumerate(Gn), desc='computing self kernels', file=sys.stdout): | |||
| ktemp = marginalizedkernel([g, g1, g2], node_label='atom', edge_label=None, | |||
| p_quit=lmbda, n_iteration=20, remove_totters=False, | |||
| n_jobs=multiprocessing.cpu_count(), verbose=False) | |||
| k_list.append(ktemp[0][0, 0]) | |||
| k_g1_list.append(ktemp[0][0, 1]) | |||
| k_g2_list.append(ktemp[0][0, 2]) | |||
| # k_list = [] # kernel between each graph and itself. | |||
| # k_g1_list = [] # kernel between each graph and g1 | |||
| # k_g2_list = [] # kernel between each graph and g2 | |||
| # for ig, g in tqdm(enumerate(Gn), desc='computing self kernels', file=sys.stdout): | |||
| # ktemp = compute_kernel([g, g1, g2], 'marginalizedkernel', False) | |||
| # k_list.append(ktemp[0][0, 0]) | |||
| # k_g1_list.append(ktemp[0][0, 1]) | |||
| # k_g2_list.append(ktemp[0][0, 2]) | |||
| km = compute_kernel(Gn, 'untilhpathkernel', True) | |||
| # k_list = np.diag(km) # kernel between each graph and itself. | |||
| # k_g1_list = km[idx_gi[0]] # kernel between each graph and g1 | |||
| # k_g2_list = km[idx_gi[1]] # kernel between each graph and g2 | |||
| g_best = [] | |||
| dis_best = [] | |||
| # for each alpha | |||
| for alpha in alpha_range: | |||
| print('alpha =', alpha) | |||
| dhat, ghat = gk_iam_nearest(Gn, alpha) | |||
| dhat, ghat = gk_iam_nearest(Gn, [alpha, 1 - alpha], idx_gi, km, k, r_max) | |||
| dis_best.append(dhat) | |||
| g_best.append(ghat) | |||
| @@ -16,18 +16,17 @@ import librariesImport, script | |||
| sys.path.insert(0, "../") | |||
| from pygraph.utils.graphfiles import saveDataset | |||
| from pygraph.utils.graphdataset import get_dataset_attributes | |||
| from pygraph.utils.utils import graph_isIdentical | |||
| #from pygraph.utils.utils import graph_deepcopy | |||
| def iam(Gn, node_label='atom', edge_label='bond_type'): | |||
| def iam(Gn, c_ei=3, c_er=3, c_es=1, node_label='atom', edge_label='bond_type', | |||
| connected=True): | |||
| """See my name, then you know what I do. | |||
| """ | |||
| # Gn = Gn[0:10] | |||
| Gn = [nx.convert_node_labels_to_integers(g) for g in Gn] | |||
| c_er = 1 | |||
| c_es = 1 | |||
| c_ei = 1 | |||
| # phase 1: initilize. | |||
| # compute set-median. | |||
| dis_min = np.inf | |||
| @@ -37,7 +36,7 @@ def iam(Gn, node_label='atom', edge_label='bond_type'): | |||
| dist_sum = 0 | |||
| pi_all.append([]) | |||
| for idx2, G_p_prime in enumerate(Gn): | |||
| dist_tmp, pi_tmp = GED(G_p, G_p_prime) | |||
| dist_tmp, pi_tmp, _ = GED(G_p, G_p_prime) | |||
| pi_all[idx1].append(pi_tmp) | |||
| dist_sum += dist_tmp | |||
| if dist_sum < dis_min: | |||
| @@ -50,7 +49,7 @@ def iam(Gn, node_label='atom', edge_label='bond_type'): | |||
| # phase 2: iteration. | |||
| ds_attrs = get_dataset_attributes(Gn, attr_names=['edge_labeled', 'node_attr_dim'], | |||
| edge_label=edge_label) | |||
| for itr in range(0, 10): | |||
| for itr in range(0, 10): # @todo: the convergence condition? | |||
| G_new = G.copy() | |||
| # update vertex labels. | |||
| # pre-compute h_i0 for each label. | |||
| @@ -138,34 +137,40 @@ def iam(Gn, node_label='atom', edge_label='bond_type'): | |||
| G_new.remove_edge(nd1, nd2) | |||
| G = G_new.copy() | |||
| # update pi_p | |||
| pi_p = [] | |||
| for idx1, G_p in enumerate(Gn): | |||
| dist_tmp, pi_tmp, _ = GED(G, G_p) | |||
| pi_p.append(pi_tmp) | |||
| return G | |||
| def GED(g1, g2, lib='gedlib'): | |||
| """ | |||
| Compute GED. It is a dummy function for now. | |||
| Compute GED. | |||
| """ | |||
| if lib == 'gedlib': | |||
| # transform dataset to the 'xml' file as the GedLib required. | |||
| saveDataset([g1, g2], [None, None], group='xml', filename='ged_tmp/tmp') | |||
| script.appel() | |||
| # script.appel() | |||
| script.PyRestartEnv() | |||
| script.PyLoadGXLGraph('ged_tmp/', 'collections/tmp.xml') | |||
| script.PyLoadGXLGraph('ged_tmp/', 'ged_tmp/tmp.xml') | |||
| listID = script.PyGetGraphIds() | |||
| script.PySetEditCost("CHEM_1") | |||
| script.PySetEditCost("CHEM_2") | |||
| script.PyInitEnv() | |||
| script.PySetMethod("BIPARTITE", "") | |||
| script.PyInitMethod() | |||
| g = listID[0] | |||
| h = listID[1] | |||
| script.PyRunMethod(g, h) | |||
| liste = script.PyGetAllMap(g, h) | |||
| pi_forward, pi_backward = script.PyGetAllMap(g, h) | |||
| upper = script.PyGetUpperBound(g, h) | |||
| lower = script.PyGetLowerBound(g, h) | |||
| dis = upper + lower | |||
| pi = liste[0] | |||
| dis = (upper + lower) / 2 | |||
| return dis, pi | |||
| return dis, pi_forward, pi_backward | |||
| def get_node_labels(Gn, node_label): | |||
| @@ -182,6 +187,434 @@ def get_edge_labels(Gn, edge_label): | |||
| return el | |||
| # --------------------------- These are tests --------------------------------# | |||
| def test_iam_with_more_graphs_as_init(Gn, G_candidate, c_ei=3, c_er=3, c_es=1, | |||
| node_label='atom', edge_label='bond_type'): | |||
| """See my name, then you know what I do. | |||
| """ | |||
| from tqdm import tqdm | |||
| # Gn = Gn[0:10] | |||
| Gn = [nx.convert_node_labels_to_integers(g) for g in Gn] | |||
| # phase 1: initilize. | |||
| # compute set-median. | |||
| dis_min = np.inf | |||
| # pi_p = [] | |||
| pi_all_forward = [] | |||
| pi_all_backward = [] | |||
| for idx1, G_p in tqdm(enumerate(G_candidate), desc='computing GEDs', file=sys.stdout): | |||
| dist_sum = 0 | |||
| pi_all_forward.append([]) | |||
| pi_all_backward.append([]) | |||
| for idx2, G_p_prime in enumerate(Gn): | |||
| dist_tmp, pi_tmp_forward, pi_tmp_backward = GED(G_p, G_p_prime) | |||
| pi_all_forward[idx1].append(pi_tmp_forward) | |||
| pi_all_backward[idx1].append(pi_tmp_backward) | |||
| dist_sum += dist_tmp | |||
| if dist_sum <= dis_min: | |||
| dis_min = dist_sum | |||
| G = G_p.copy() | |||
| idx_min = idx1 | |||
| # list of edit operations. | |||
| pi_p_forward = pi_all_forward[idx_min] | |||
| pi_p_backward = pi_all_backward[idx_min] | |||
| # phase 2: iteration. | |||
| ds_attrs = get_dataset_attributes(Gn + [G], attr_names=['edge_labeled', 'node_attr_dim'], | |||
| edge_label=edge_label) | |||
| label_set = get_node_labels(Gn + [G], node_label) | |||
| for itr in range(0, 10): # @todo: the convergence condition? | |||
| G_new = G.copy() | |||
| # update vertex labels. | |||
| # pre-compute h_i0 for each label. | |||
| # for label in get_node_labels(Gn, node_label): | |||
| # print(label) | |||
| # for nd in G.nodes(data=True): | |||
| # pass | |||
| if not ds_attrs['node_attr_dim']: # labels are symbolic | |||
| for nd in G.nodes(): | |||
| h_i0_list = [] | |||
| label_list = [] | |||
| for label in label_set: | |||
| h_i0 = 0 | |||
| for idx, g in enumerate(Gn): | |||
| pi_i = pi_p_forward[idx][nd] | |||
| if g.has_node(pi_i) and g.nodes[pi_i][node_label] == label: | |||
| h_i0 += 1 | |||
| h_i0_list.append(h_i0) | |||
| label_list.append(label) | |||
| # choose one of the best randomly. | |||
| idx_max = np.argwhere(h_i0_list == np.max(h_i0_list)).flatten().tolist() | |||
| idx_rdm = random.randint(0, len(idx_max) - 1) | |||
| G_new.nodes[nd][node_label] = label_list[idx_max[idx_rdm]] | |||
| else: # labels are non-symbolic | |||
| for nd in G.nodes(): | |||
| Si_norm = 0 | |||
| phi_i_bar = np.array([0.0 for _ in range(ds_attrs['node_attr_dim'])]) | |||
| for idx, g in enumerate(Gn): | |||
| pi_i = pi_p_forward[idx][nd] | |||
| if g.has_node(pi_i): #@todo: what if no g has node? phi_i_bar = 0? | |||
| Si_norm += 1 | |||
| phi_i_bar += np.array([float(itm) for itm in g.nodes[pi_i]['attributes']]) | |||
| phi_i_bar /= Si_norm | |||
| G_new.nodes[nd]['attributes'] = phi_i_bar | |||
| # update edge labels and adjacency matrix. | |||
| if ds_attrs['edge_labeled']: | |||
| for nd1, nd2, _ in G.edges(data=True): | |||
| h_ij0_list = [] | |||
| label_list = [] | |||
| for label in get_edge_labels(Gn, edge_label): | |||
| h_ij0 = 0 | |||
| for idx, g in enumerate(Gn): | |||
| pi_i = pi_p_forward[idx][nd1] | |||
| pi_j = pi_p_forward[idx][nd2] | |||
| h_ij0_p = (g.has_node(pi_i) and g.has_node(pi_j) and | |||
| g.has_edge(pi_i, pi_j) and | |||
| g.edges[pi_i, pi_j][edge_label] == label) | |||
| h_ij0 += h_ij0_p | |||
| h_ij0_list.append(h_ij0) | |||
| label_list.append(label) | |||
| # choose one of the best randomly. | |||
| idx_max = np.argwhere(h_ij0_list == np.max(h_ij0_list)).flatten().tolist() | |||
| h_ij0_max = h_ij0_list[idx_max[0]] | |||
| idx_rdm = random.randint(0, len(idx_max) - 1) | |||
| best_label = label_list[idx_max[idx_rdm]] | |||
| # check whether a_ij is 0 or 1. | |||
| sij_norm = 0 | |||
| for idx, g in enumerate(Gn): | |||
| pi_i = pi_p_forward[idx][nd1] | |||
| pi_j = pi_p_forward[idx][nd2] | |||
| if g.has_node(pi_i) and g.has_node(pi_j) and g.has_edge(pi_i, pi_j): | |||
| sij_norm += 1 | |||
| if h_ij0_max > len(Gn) * c_er / c_es + sij_norm * (1 - (c_er + c_ei) / c_es): | |||
| if not G_new.has_edge(nd1, nd2): | |||
| G_new.add_edge(nd1, nd2) | |||
| G_new.edges[nd1, nd2][edge_label] = best_label | |||
| else: | |||
| if G_new.has_edge(nd1, nd2): | |||
| G_new.remove_edge(nd1, nd2) | |||
| else: # if edges are unlabeled | |||
| # @todo: works only for undirected graphs. | |||
| for nd1 in range(nx.number_of_nodes(G)): | |||
| for nd2 in range(nd1 + 1, nx.number_of_nodes(G)): | |||
| sij_norm = 0 | |||
| for idx, g in enumerate(Gn): | |||
| pi_i = pi_p_forward[idx][nd1] | |||
| pi_j = pi_p_forward[idx][nd2] | |||
| if g.has_node(pi_i) and g.has_node(pi_j) and g.has_edge(pi_i, pi_j): | |||
| sij_norm += 1 | |||
| if sij_norm > len(Gn) * c_er / (c_er + c_ei): | |||
| if not G_new.has_edge(nd1, nd2): | |||
| G_new.add_edge(nd1, nd2) | |||
| elif sij_norm < len(Gn) * c_er / (c_er + c_ei): | |||
| if G_new.has_edge(nd1, nd2): | |||
| G_new.remove_edge(nd1, nd2) | |||
| # do not change anything when equal. | |||
| G = G_new.copy() | |||
| # update pi_p | |||
| pi_p_forward = [] | |||
| for G_p in Gn: | |||
| dist_tmp, pi_tmp_forward, pi_tmp_backward = GED(G, G_p) | |||
| pi_p_forward.append(pi_tmp_forward) | |||
| return G | |||
| def test_iam_moreGraphsAsInit_tryAllPossibleBestGraphs_deleteNodesInIterations( | |||
| Gn_median, Gn_candidate, c_ei=3, c_er=3, c_es=1, node_label='atom', | |||
| edge_label='bond_type', connected=True): | |||
| """See my name, then you know what I do. | |||
| """ | |||
| from tqdm import tqdm | |||
| # Gn_median = Gn_median[0:10] | |||
| # Gn_median = [nx.convert_node_labels_to_integers(g) for g in Gn_median] | |||
| node_ir = sys.maxsize * 2 # Max number for c++, corresponding to the node remove and insertion. | |||
| label_r = 'thanksdanny' # the label for node remove. # @todo: make this label unrepeatable. | |||
| ds_attrs = get_dataset_attributes(Gn_median + Gn_candidate, | |||
| attr_names=['edge_labeled', 'node_attr_dim'], | |||
| edge_label=edge_label) | |||
| def generate_graph(G, pi_p_forward, label_set): | |||
| G_new_list = [G.copy()] # all "best" graphs generated in this iteration. | |||
| # nx.draw_networkx(G) | |||
| # import matplotlib.pyplot as plt | |||
| # plt.show() | |||
| # print(pi_p_forward) | |||
| # update vertex labels. | |||
| # pre-compute h_i0 for each label. | |||
| # for label in get_node_labels(Gn, node_label): | |||
| # print(label) | |||
| # for nd in G.nodes(data=True): | |||
| # pass | |||
| if not ds_attrs['node_attr_dim']: # labels are symbolic | |||
| for ndi, (nd, _) in enumerate(G.nodes(data=True)): | |||
| h_i0_list = [] | |||
| label_list = [] | |||
| for label in label_set: | |||
| h_i0 = 0 | |||
| for idx, g in enumerate(Gn_median): | |||
| pi_i = pi_p_forward[idx][ndi] | |||
| if g.has_node(pi_i) and g.nodes[pi_i][node_label] == label: | |||
| h_i0 += 1 | |||
| h_i0_list.append(h_i0) | |||
| label_list.append(label) | |||
| # case when the node is to be removed. | |||
| h_i0_remove = 0 | |||
| for idx, g in enumerate(Gn_median): | |||
| pi_i = pi_p_forward[idx][ndi] | |||
| if pi_i == node_ir: | |||
| h_i0_remove += 1 | |||
| h_i0_list.append(h_i0_remove) | |||
| label_list.append(label_r) | |||
| # get the best labels. | |||
| idx_max = np.argwhere(h_i0_list == np.max(h_i0_list)).flatten().tolist() | |||
| nlabel_best = [label_list[idx] for idx in idx_max] | |||
| # generate "best" graphs with regard to "best" node labels. | |||
| G_new_list_nd = [] | |||
| for g in G_new_list: | |||
| for nl in nlabel_best: | |||
| g_tmp = g.copy() | |||
| if nl == label_r: | |||
| g_tmp.remove_node(nd) | |||
| else: | |||
| g_tmp.nodes[nd][node_label] = nl | |||
| G_new_list_nd.append(g_tmp) | |||
| # nx.draw_networkx(g_tmp) | |||
| # import matplotlib.pyplot as plt | |||
| # plt.show() | |||
| # print(g_tmp.nodes(data=True)) | |||
| # print(g_tmp.edges(data=True)) | |||
| G_new_list = G_new_list_nd[:] | |||
| else: # labels are non-symbolic | |||
| for nd in G.nodes(): | |||
| Si_norm = 0 | |||
| phi_i_bar = np.array([0.0 for _ in range(ds_attrs['node_attr_dim'])]) | |||
| for idx, g in enumerate(Gn_median): | |||
| pi_i = pi_p_forward[idx][nd] | |||
| if g.has_node(pi_i): #@todo: what if no g has node? phi_i_bar = 0? | |||
| Si_norm += 1 | |||
| phi_i_bar += np.array([float(itm) for itm in g.nodes[pi_i]['attributes']]) | |||
| phi_i_bar /= Si_norm | |||
| G_new.nodes[nd]['attributes'] = phi_i_bar | |||
| # update edge labels and adjacency matrix. | |||
| if ds_attrs['edge_labeled']: | |||
| for nd1, nd2, _ in G.edges(data=True): | |||
| h_ij0_list = [] | |||
| label_list = [] | |||
| for label in get_edge_labels(Gn_median, edge_label): | |||
| h_ij0 = 0 | |||
| for idx, g in enumerate(Gn_median): | |||
| pi_i = pi_p_forward[idx][nd1] | |||
| pi_j = pi_p_forward[idx][nd2] | |||
| h_ij0_p = (g.has_node(pi_i) and g.has_node(pi_j) and | |||
| g.has_edge(pi_i, pi_j) and | |||
| g.edges[pi_i, pi_j][edge_label] == label) | |||
| h_ij0 += h_ij0_p | |||
| h_ij0_list.append(h_ij0) | |||
| label_list.append(label) | |||
| # choose one of the best randomly. | |||
| idx_max = np.argwhere(h_ij0_list == np.max(h_ij0_list)).flatten().tolist() | |||
| h_ij0_max = h_ij0_list[idx_max[0]] | |||
| idx_rdm = random.randint(0, len(idx_max) - 1) | |||
| best_label = label_list[idx_max[idx_rdm]] | |||
| # check whether a_ij is 0 or 1. | |||
| sij_norm = 0 | |||
| for idx, g in enumerate(Gn_median): | |||
| pi_i = pi_p_forward[idx][nd1] | |||
| pi_j = pi_p_forward[idx][nd2] | |||
| if g.has_node(pi_i) and g.has_node(pi_j) and g.has_edge(pi_i, pi_j): | |||
| sij_norm += 1 | |||
| if h_ij0_max > len(Gn_median) * c_er / c_es + sij_norm * (1 - (c_er + c_ei) / c_es): | |||
| if not G_new.has_edge(nd1, nd2): | |||
| G_new.add_edge(nd1, nd2) | |||
| G_new.edges[nd1, nd2][edge_label] = best_label | |||
| else: | |||
| if G_new.has_edge(nd1, nd2): | |||
| G_new.remove_edge(nd1, nd2) | |||
| else: # if edges are unlabeled | |||
| # @todo: works only for undirected graphs. | |||
| nd_list = [n for n in G.nodes()] | |||
| for g_tmp in G_new_list: | |||
| for nd1i in range(nx.number_of_nodes(G)): | |||
| nd1 = nd_list[nd1i] | |||
| for nd2i in range(nd1i + 1, nx.number_of_nodes(G)): | |||
| nd2 = nd_list[nd2i] | |||
| sij_norm = 0 | |||
| for idx, g in enumerate(Gn_median): | |||
| pi_i = pi_p_forward[idx][nd1i] | |||
| pi_j = pi_p_forward[idx][nd2i] | |||
| if g.has_node(pi_i) and g.has_node(pi_j) and g.has_edge(pi_i, pi_j): | |||
| sij_norm += 1 | |||
| if sij_norm > len(Gn_median) * c_er / (c_er + c_ei): | |||
| # @todo: should we consider if nd1 and nd2 in g_tmp? | |||
| # or just add the edge anyway? | |||
| if g_tmp.has_node(nd1) and g_tmp.has_node(nd2) \ | |||
| and not g_tmp.has_edge(nd1, nd2): | |||
| g_tmp.add_edge(nd1, nd2) | |||
| elif sij_norm < len(Gn_median) * c_er / (c_er + c_ei): | |||
| if g_tmp.has_edge(nd1, nd2): | |||
| g_tmp.remove_edge(nd1, nd2) | |||
| # do not change anything when equal. | |||
| # find the best graph generated in this iteration and update pi_p. | |||
| # @todo: should we update all graphs generated or just the best ones? | |||
| dis_list, pi_forward_list = median_distance(G_new_list, Gn_median) | |||
| # @todo: should we remove the identical and connectivity check? | |||
| # Don't know which is faster. | |||
| G_new_list, idx_list = remove_duplicates(G_new_list) | |||
| pi_forward_list = [pi_forward_list[idx] for idx in idx_list] | |||
| # if connected == True: | |||
| # G_new_list, idx_list = remove_disconnected(G_new_list) | |||
| # pi_forward_list = [pi_forward_list[idx] for idx in idx_list] | |||
| # idx_min_list = np.argwhere(dis_list == np.min(dis_list)).flatten().tolist() | |||
| # dis_min = dis_list[idx_min_tmp_list[0]] | |||
| # pi_forward_list = [pi_forward_list[idx] for idx in idx_min_list] | |||
| # G_new_list = [G_new_list[idx] for idx in idx_min_list] | |||
| for g in G_new_list: | |||
| import matplotlib.pyplot as plt | |||
| nx.draw_networkx(g) | |||
| plt.show() | |||
| print(g.nodes(data=True)) | |||
| print(g.edges(data=True)) | |||
| return G_new_list, pi_forward_list | |||
| def median_distance(Gn, Gn_median, measure='ged', verbose=False): | |||
| dis_list = [] | |||
| pi_forward_list = [] | |||
| for idx, G in tqdm(enumerate(Gn), desc='computing median distances', | |||
| file=sys.stdout) if verbose else enumerate(Gn): | |||
| dis_sum = 0 | |||
| pi_forward_list.append([]) | |||
| for G_p in Gn_median: | |||
| dis_tmp, pi_tmp_forward, pi_tmp_backward = GED(G, G_p) | |||
| pi_forward_list[idx].append(pi_tmp_forward) | |||
| dis_sum += dis_tmp | |||
| dis_list.append(dis_sum) | |||
| return dis_list, pi_forward_list | |||
| def best_median_graphs(Gn_candidate, dis_all, pi_all_forward): | |||
| idx_min_list = np.argwhere(dis_all == np.min(dis_all)).flatten().tolist() | |||
| dis_min = dis_all[idx_min_list[0]] | |||
| pi_forward_min_list = [pi_all_forward[idx] for idx in idx_min_list] | |||
| G_min_list = [Gn_candidate[idx] for idx in idx_min_list] | |||
| return G_min_list, pi_forward_min_list, dis_min | |||
| def iteration_proc(G, pi_p_forward): | |||
| G_list = [G] | |||
| pi_forward_list = [pi_p_forward] | |||
| # iterations. | |||
| for itr in range(0, 10): # @todo: the convergence condition? | |||
| # print('itr is', itr) | |||
| G_new_list = [] | |||
| pi_forward_new_list = [] | |||
| for idx, G in enumerate(G_list): | |||
| label_set = get_node_labels(Gn_median + [G], node_label) | |||
| G_tmp_list, pi_forward_tmp_list = generate_graph( | |||
| G, pi_forward_list[idx], label_set) | |||
| G_new_list += G_tmp_list | |||
| pi_forward_new_list += pi_forward_tmp_list | |||
| G_list = G_new_list[:] | |||
| pi_forward_list = pi_forward_new_list[:] | |||
| G_list, idx_list = remove_duplicates(G_list) | |||
| pi_forward_list = [pi_forward_list[idx] for idx in idx_list] | |||
| # import matplotlib.pyplot as plt | |||
| # for g in G_list: | |||
| # nx.draw_networkx(g) | |||
| # plt.show() | |||
| # print(g.nodes(data=True)) | |||
| # print(g.edges(data=True)) | |||
| return G_list, pi_forward_list # do we return all graphs or the best ones? | |||
| def remove_duplicates(Gn): | |||
| """Remove duplicate graphs from list. | |||
| """ | |||
| Gn_new = [] | |||
| idx_list = [] | |||
| for idx, g in enumerate(Gn): | |||
| dupl = False | |||
| for g_new in Gn_new: | |||
| if graph_isIdentical(g_new, g): | |||
| dupl = True | |||
| break | |||
| if not dupl: | |||
| Gn_new.append(g) | |||
| idx_list.append(idx) | |||
| return Gn_new, idx_list | |||
| def remove_disconnected(Gn): | |||
| """Remove disconnected graphs from list. | |||
| """ | |||
| Gn_new = [] | |||
| idx_list = [] | |||
| for idx, g in enumerate(Gn): | |||
| if nx.is_connected(g): | |||
| Gn_new.append(g) | |||
| idx_list.append(idx) | |||
| return Gn_new, idx_list | |||
| # phase 1: initilize. | |||
| # compute set-median. | |||
| dis_min = np.inf | |||
| dis_all, pi_all_forward = median_distance(Gn_candidate[::-1], Gn_median) | |||
| # find all smallest distances. | |||
| idx_min_list = np.argwhere(dis_all == np.min(dis_all)).flatten().tolist() | |||
| dis_min = dis_all[idx_min_list[0]] | |||
| # phase 2: iteration. | |||
| G_list = [] | |||
| for idx_min in idx_min_list[::-1]: | |||
| # print('idx_min is', idx_min) | |||
| G = Gn_candidate[idx_min].copy() | |||
| # list of edit operations. | |||
| pi_p_forward = pi_all_forward[idx_min] | |||
| # pi_p_backward = pi_all_backward[idx_min] | |||
| Gi_list, pi_i_forward_list = iteration_proc(G, pi_p_forward) | |||
| G_list += Gi_list | |||
| G_list, _ = remove_duplicates(G_list) | |||
| if connected == True: | |||
| G_list, _ = remove_disconnected(G_list) | |||
| import matplotlib.pyplot as plt | |||
| for g in G_list: | |||
| nx.draw_networkx(g) | |||
| plt.show() | |||
| print(g.nodes(data=True)) | |||
| print(g.edges(data=True)) | |||
| # get the best median graphs | |||
| dis_all, pi_all_forward = median_distance(G_list, Gn_median) | |||
| G_min_list, pi_forward_min_list, dis_min = best_median_graphs( | |||
| G_list, dis_all, pi_all_forward) | |||
| for g in G_min_list: | |||
| nx.draw_networkx(g) | |||
| plt.show() | |||
| print(g.nodes(data=True)) | |||
| print(g.edges(data=True)) | |||
| return G_min_list | |||
| if __name__ == '__main__': | |||
| from pygraph.utils.graphfiles import loadDataset | |||
| ds = {'name': 'MUTAG', 'dataset': '../datasets/MUTAG/MUTAG.mat', | |||
| @@ -0,0 +1,430 @@ | |||
| """ | |||
| @author: linlin | |||
| @references: Gaüzère B, Brun L, Villemin D. Two new graphs kernels in chemoinformatics. Pattern Recognition Letters. 2012 Nov 1;33(15):2038-47. | |||
| """ | |||
| import sys | |||
| sys.path.insert(0, "../") | |||
| import time | |||
| from collections import Counter | |||
| from itertools import chain | |||
| from functools import partial | |||
| from multiprocessing import Pool | |||
| from tqdm import tqdm | |||
| import networkx as nx | |||
| import numpy as np | |||
| from pygraph.utils.graphdataset import get_dataset_attributes | |||
| from pygraph.utils.parallel import parallel_gm | |||
| def treeletkernel(*args, | |||
| sub_kernel, | |||
| node_label='atom', | |||
| edge_label='bond_type', | |||
| n_jobs=None, | |||
| verbose=True): | |||
| """Calculate treelet graph kernels between graphs. | |||
| Parameters | |||
| ---------- | |||
| Gn : List of NetworkX graph | |||
| List of graphs between which the kernels are calculated. | |||
| / | |||
| G1, G2 : NetworkX graphs | |||
| Two graphs between which the kernel is calculated. | |||
| sub_kernel : function | |||
| The sub-kernel between 2 real number vectors. Each vector counts the | |||
| numbers of isomorphic treelets in a graph. | |||
| node_label : string | |||
| Node attribute used as label. The default node label is atom. | |||
| edge_label : string | |||
| Edge attribute used as label. The default edge label is bond_type. | |||
| labeled : boolean | |||
| Whether the graphs are labeled. The default is True. | |||
| Return | |||
| ------ | |||
| Kmatrix : Numpy matrix | |||
| Kernel matrix, each element of which is the treelet kernel between 2 praphs. | |||
| """ | |||
| # pre-process | |||
| Gn = args[0] if len(args) == 1 else [args[0], args[1]] | |||
| Kmatrix = np.zeros((len(Gn), len(Gn))) | |||
| ds_attrs = get_dataset_attributes(Gn, | |||
| attr_names=['node_labeled', 'edge_labeled', 'is_directed'], | |||
| node_label=node_label, edge_label=edge_label) | |||
| labeled = False | |||
| if ds_attrs['node_labeled'] or ds_attrs['edge_labeled']: | |||
| labeled = True | |||
| if not ds_attrs['node_labeled']: | |||
| for G in Gn: | |||
| nx.set_node_attributes(G, '0', 'atom') | |||
| if not ds_attrs['edge_labeled']: | |||
| for G in Gn: | |||
| nx.set_edge_attributes(G, '0', 'bond_type') | |||
| start_time = time.time() | |||
| # ---- use pool.imap_unordered to parallel and track progress. ---- | |||
| # get all canonical keys of all graphs before calculating kernels to save | |||
| # time, but this may cost a lot of memory for large dataset. | |||
| pool = Pool(n_jobs) | |||
| itr = zip(Gn, range(0, len(Gn))) | |||
| if len(Gn) < 100 * n_jobs: | |||
| chunksize = int(len(Gn) / n_jobs) + 1 | |||
| else: | |||
| chunksize = 100 | |||
| canonkeys = [[] for _ in range(len(Gn))] | |||
| getps_partial = partial(wrapper_get_canonkeys, node_label, edge_label, | |||
| labeled, ds_attrs['is_directed']) | |||
| if verbose: | |||
| iterator = tqdm(pool.imap_unordered(getps_partial, itr, chunksize), | |||
| desc='getting canonkeys', file=sys.stdout) | |||
| else: | |||
| iterator = pool.imap_unordered(getps_partial, itr, chunksize) | |||
| for i, ck in iterator: | |||
| canonkeys[i] = ck | |||
| pool.close() | |||
| pool.join() | |||
| # compute kernels. | |||
| def init_worker(canonkeys_toshare): | |||
| global G_canonkeys | |||
| G_canonkeys = canonkeys_toshare | |||
| do_partial = partial(wrapper_treeletkernel_do, sub_kernel) | |||
| parallel_gm(do_partial, Kmatrix, Gn, init_worker=init_worker, | |||
| glbv=(canonkeys,), n_jobs=n_jobs, verbose=verbose) | |||
| run_time = time.time() - start_time | |||
| if verbose: | |||
| print("\n --- treelet kernel matrix of size %d built in %s seconds ---" | |||
| % (len(Gn), run_time)) | |||
| return Kmatrix, run_time | |||
| def _treeletkernel_do(canonkey1, canonkey2, sub_kernel): | |||
| """Calculate treelet graph kernel between 2 graphs. | |||
| Parameters | |||
| ---------- | |||
| canonkey1, canonkey2 : list | |||
| List of canonical keys in 2 graphs, where each key is represented by a string. | |||
| Return | |||
| ------ | |||
| kernel : float | |||
| Treelet Kernel between 2 graphs. | |||
| """ | |||
| keys = set(canonkey1.keys()) & set(canonkey2.keys()) # find same canonical keys in both graphs | |||
| vector1 = np.array([(canonkey1[key] if (key in canonkey1.keys()) else 0) for key in keys]) | |||
| vector2 = np.array([(canonkey2[key] if (key in canonkey2.keys()) else 0) for key in keys]) | |||
| kernel = np.sum(np.exp(-np.square(vector1 - vector2) / 2)) | |||
| # kernel = sub_kernel(vector1, vector2) | |||
| return kernel | |||
| def wrapper_treeletkernel_do(sub_kernel, itr): | |||
| i = itr[0] | |||
| j = itr[1] | |||
| return i, j, _treeletkernel_do(G_canonkeys[i], G_canonkeys[j], sub_kernel) | |||
| def get_canonkeys(G, node_label, edge_label, labeled, is_directed): | |||
| """Generate canonical keys of all treelets in a graph. | |||
| Parameters | |||
| ---------- | |||
| G : NetworkX graphs | |||
| The graph in which keys are generated. | |||
| node_label : string | |||
| node attribute used as label. The default node label is atom. | |||
| edge_label : string | |||
| edge attribute used as label. The default edge label is bond_type. | |||
| labeled : boolean | |||
| Whether the graphs are labeled. The default is True. | |||
| Return | |||
| ------ | |||
| canonkey/canonkey_l : dict | |||
| For unlabeled graphs, canonkey is a dictionary which records amount of | |||
| every tree pattern. For labeled graphs, canonkey_l is one which keeps | |||
| track of amount of every treelet. | |||
| """ | |||
| patterns = {} # a dictionary which consists of lists of patterns for all graphlet. | |||
| canonkey = {} # canonical key, a dictionary which records amount of every tree pattern. | |||
| ### structural analysis ### | |||
| ### In this section, a list of patterns is generated for each graphlet, | |||
| ### where every pattern is represented by nodes ordered by Morgan's | |||
| ### extended labeling. | |||
| # linear patterns | |||
| patterns['0'] = G.nodes() | |||
| canonkey['0'] = nx.number_of_nodes(G) | |||
| for i in range(1, 6): # for i in range(1, 6): | |||
| patterns[str(i)] = find_all_paths(G, i, is_directed) | |||
| canonkey[str(i)] = len(patterns[str(i)]) | |||
| # n-star patterns | |||
| patterns['3star'] = [[node] + [neighbor for neighbor in G[node]] for node in G.nodes() if G.degree(node) == 3] | |||
| patterns['4star'] = [[node] + [neighbor for neighbor in G[node]] for node in G.nodes() if G.degree(node) == 4] | |||
| patterns['5star'] = [[node] + [neighbor for neighbor in G[node]] for node in G.nodes() if G.degree(node) == 5] | |||
| # n-star patterns | |||
| canonkey['6'] = len(patterns['3star']) | |||
| canonkey['8'] = len(patterns['4star']) | |||
| canonkey['d'] = len(patterns['5star']) | |||
| # pattern 7 | |||
| patterns['7'] = [] # the 1st line of Table 1 in Ref [1] | |||
| for pattern in patterns['3star']: | |||
| for i in range(1, len(pattern)): # for each neighbor of node 0 | |||
| if G.degree(pattern[i]) >= 2: | |||
| pattern_t = pattern[:] | |||
| # set the node with degree >= 2 as the 4th node | |||
| pattern_t[i], pattern_t[3] = pattern_t[3], pattern_t[i] | |||
| for neighborx in G[pattern[i]]: | |||
| if neighborx != pattern[0]: | |||
| new_pattern = pattern_t + [neighborx] | |||
| patterns['7'].append(new_pattern) | |||
| canonkey['7'] = len(patterns['7']) | |||
| # pattern 11 | |||
| patterns['11'] = [] # the 4th line of Table 1 in Ref [1] | |||
| for pattern in patterns['4star']: | |||
| for i in range(1, len(pattern)): | |||
| if G.degree(pattern[i]) >= 2: | |||
| pattern_t = pattern[:] | |||
| pattern_t[i], pattern_t[4] = pattern_t[4], pattern_t[i] | |||
| for neighborx in G[pattern[i]]: | |||
| if neighborx != pattern[0]: | |||
| new_pattern = pattern_t + [ neighborx ] | |||
| patterns['11'].append(new_pattern) | |||
| canonkey['b'] = len(patterns['11']) | |||
| # pattern 12 | |||
| patterns['12'] = [] # the 5th line of Table 1 in Ref [1] | |||
| rootlist = [] # a list of root nodes, whose extended labels are 3 | |||
| for pattern in patterns['3star']: | |||
| if pattern[0] not in rootlist: # prevent to count the same pattern twice from each of the two root nodes | |||
| rootlist.append(pattern[0]) | |||
| for i in range(1, len(pattern)): | |||
| if G.degree(pattern[i]) >= 3: | |||
| rootlist.append(pattern[i]) | |||
| pattern_t = pattern[:] | |||
| pattern_t[i], pattern_t[3] = pattern_t[3], pattern_t[i] | |||
| for neighborx1 in G[pattern[i]]: | |||
| if neighborx1 != pattern[0]: | |||
| for neighborx2 in G[pattern[i]]: | |||
| if neighborx1 > neighborx2 and neighborx2 != pattern[0]: | |||
| new_pattern = pattern_t + [neighborx1] + [neighborx2] | |||
| # new_patterns = [ pattern + [neighborx1] + [neighborx2] for neighborx1 in G[pattern[i]] if neighborx1 != pattern[0] for neighborx2 in G[pattern[i]] if (neighborx1 > neighborx2 and neighborx2 != pattern[0]) ] | |||
| patterns['12'].append(new_pattern) | |||
| canonkey['c'] = int(len(patterns['12']) / 2) | |||
| # pattern 9 | |||
| patterns['9'] = [] # the 2nd line of Table 1 in Ref [1] | |||
| for pattern in patterns['3star']: | |||
| for pairs in [ [neighbor1, neighbor2] for neighbor1 in G[pattern[0]] if G.degree(neighbor1) >= 2 \ | |||
| for neighbor2 in G[pattern[0]] if G.degree(neighbor2) >= 2 if neighbor1 > neighbor2 ]: | |||
| pattern_t = pattern[:] | |||
| # move nodes with extended labels 4 to specific position to correspond to their children | |||
| pattern_t[pattern_t.index(pairs[0])], pattern_t[2] = pattern_t[2], pattern_t[pattern_t.index(pairs[0])] | |||
| pattern_t[pattern_t.index(pairs[1])], pattern_t[3] = pattern_t[3], pattern_t[pattern_t.index(pairs[1])] | |||
| for neighborx1 in G[pairs[0]]: | |||
| if neighborx1 != pattern[0]: | |||
| for neighborx2 in G[pairs[1]]: | |||
| if neighborx2 != pattern[0]: | |||
| new_pattern = pattern_t + [neighborx1] + [neighborx2] | |||
| patterns['9'].append(new_pattern) | |||
| canonkey['9'] = len(patterns['9']) | |||
| # pattern 10 | |||
| patterns['10'] = [] # the 3rd line of Table 1 in Ref [1] | |||
| for pattern in patterns['3star']: | |||
| for i in range(1, len(pattern)): | |||
| if G.degree(pattern[i]) >= 2: | |||
| for neighborx in G[pattern[i]]: | |||
| if neighborx != pattern[0] and G.degree(neighborx) >= 2: | |||
| pattern_t = pattern[:] | |||
| pattern_t[i], pattern_t[3] = pattern_t[3], pattern_t[i] | |||
| new_patterns = [ pattern_t + [neighborx] + [neighborxx] for neighborxx in G[neighborx] if neighborxx != pattern[i] ] | |||
| patterns['10'].extend(new_patterns) | |||
| canonkey['a'] = len(patterns['10']) | |||
| ### labeling information ### | |||
| ### In this section, a list of canonical keys is generated for every | |||
| ### pattern obtained in the structural analysis section above, which is a | |||
| ### string corresponding to a unique treelet. A dictionary is built to keep | |||
| ### track of the amount of every treelet. | |||
| if labeled == True: | |||
| canonkey_l = {} # canonical key, a dictionary which keeps track of amount of every treelet. | |||
| # linear patterns | |||
| canonkey_t = Counter(list(nx.get_node_attributes(G, node_label).values())) | |||
| for key in canonkey_t: | |||
| canonkey_l['0' + key] = canonkey_t[key] | |||
| for i in range(1, 6): # for i in range(1, 6): | |||
| treelet = [] | |||
| for pattern in patterns[str(i)]: | |||
| canonlist = list(chain.from_iterable((G.node[node][node_label], \ | |||
| G[node][pattern[idx+1]][edge_label]) for idx, node in enumerate(pattern[:-1]))) | |||
| canonlist.append(G.node[pattern[-1]][node_label]) | |||
| canonkey_t = ''.join(canonlist) | |||
| canonkey_t = canonkey_t if canonkey_t < canonkey_t[::-1] else canonkey_t[::-1] | |||
| treelet.append(str(i) + canonkey_t) | |||
| canonkey_l.update(Counter(treelet)) | |||
| # n-star patterns | |||
| for i in range(3, 6): | |||
| treelet = [] | |||
| for pattern in patterns[str(i) + 'star']: | |||
| canonlist = [ G.node[leaf][node_label] + G[leaf][pattern[0]][edge_label] for leaf in pattern[1:] ] | |||
| canonlist.sort() | |||
| canonkey_t = ('d' if i == 5 else str(i * 2)) + G.node[pattern[0]][node_label] + ''.join(canonlist) | |||
| treelet.append(canonkey_t) | |||
| canonkey_l.update(Counter(treelet)) | |||
| # pattern 7 | |||
| treelet = [] | |||
| for pattern in patterns['7']: | |||
| canonlist = [ G.node[leaf][node_label] + G[leaf][pattern[0]][edge_label] for leaf in pattern[1:3] ] | |||
| canonlist.sort() | |||
| canonkey_t = '7' + G.node[pattern[0]][node_label] + ''.join(canonlist) \ | |||
| + G.node[pattern[3]][node_label] + G[pattern[3]][pattern[0]][edge_label] \ | |||
| + G.node[pattern[4]][node_label] + G[pattern[4]][pattern[3]][edge_label] | |||
| treelet.append(canonkey_t) | |||
| canonkey_l.update(Counter(treelet)) | |||
| # pattern 11 | |||
| treelet = [] | |||
| for pattern in patterns['11']: | |||
| canonlist = [ G.node[leaf][node_label] + G[leaf][pattern[0]][edge_label] for leaf in pattern[1:4] ] | |||
| canonlist.sort() | |||
| canonkey_t = 'b' + G.node[pattern[0]][node_label] + ''.join(canonlist) \ | |||
| + G.node[pattern[4]][node_label] + G[pattern[4]][pattern[0]][edge_label] \ | |||
| + G.node[pattern[5]][node_label] + G[pattern[5]][pattern[4]][edge_label] | |||
| treelet.append(canonkey_t) | |||
| canonkey_l.update(Counter(treelet)) | |||
| # pattern 10 | |||
| treelet = [] | |||
| for pattern in patterns['10']: | |||
| canonkey4 = G.node[pattern[5]][node_label] + G[pattern[5]][pattern[4]][edge_label] | |||
| canonlist = [ G.node[leaf][node_label] + G[leaf][pattern[0]][edge_label] for leaf in pattern[1:3] ] | |||
| canonlist.sort() | |||
| canonkey0 = ''.join(canonlist) | |||
| canonkey_t = 'a' + G.node[pattern[3]][node_label] \ | |||
| + G.node[pattern[4]][node_label] + G[pattern[4]][pattern[3]][edge_label] \ | |||
| + G.node[pattern[0]][node_label] + G[pattern[0]][pattern[3]][edge_label] \ | |||
| + canonkey4 + canonkey0 | |||
| treelet.append(canonkey_t) | |||
| canonkey_l.update(Counter(treelet)) | |||
| # pattern 12 | |||
| treelet = [] | |||
| for pattern in patterns['12']: | |||
| canonlist0 = [ G.node[leaf][node_label] + G[leaf][pattern[0]][edge_label] for leaf in pattern[1:3] ] | |||
| canonlist0.sort() | |||
| canonlist3 = [ G.node[leaf][node_label] + G[leaf][pattern[3]][edge_label] for leaf in pattern[4:6] ] | |||
| canonlist3.sort() | |||
| # 2 possible key can be generated from 2 nodes with extended label 3, select the one with lower lexicographic order. | |||
| canonkey_t1 = 'c' + G.node[pattern[0]][node_label] \ | |||
| + ''.join(canonlist0) \ | |||
| + G.node[pattern[3]][node_label] + G[pattern[3]][pattern[0]][edge_label] \ | |||
| + ''.join(canonlist3) | |||
| canonkey_t2 = 'c' + G.node[pattern[3]][node_label] \ | |||
| + ''.join(canonlist3) \ | |||
| + G.node[pattern[0]][node_label] + G[pattern[0]][pattern[3]][edge_label] \ | |||
| + ''.join(canonlist0) | |||
| treelet.append(canonkey_t1 if canonkey_t1 < canonkey_t2 else canonkey_t2) | |||
| canonkey_l.update(Counter(treelet)) | |||
| # pattern 9 | |||
| treelet = [] | |||
| for pattern in patterns['9']: | |||
| canonkey2 = G.node[pattern[4]][node_label] + G[pattern[4]][pattern[2]][edge_label] | |||
| canonkey3 = G.node[pattern[5]][node_label] + G[pattern[5]][pattern[3]][edge_label] | |||
| prekey2 = G.node[pattern[2]][node_label] + G[pattern[2]][pattern[0]][edge_label] | |||
| prekey3 = G.node[pattern[3]][node_label] + G[pattern[3]][pattern[0]][edge_label] | |||
| if prekey2 + canonkey2 < prekey3 + canonkey3: | |||
| canonkey_t = G.node[pattern[1]][node_label] + G[pattern[1]][pattern[0]][edge_label] \ | |||
| + prekey2 + prekey3 + canonkey2 + canonkey3 | |||
| else: | |||
| canonkey_t = G.node[pattern[1]][node_label] + G[pattern[1]][pattern[0]][edge_label] \ | |||
| + prekey3 + prekey2 + canonkey3 + canonkey2 | |||
| treelet.append('9' + G.node[pattern[0]][node_label] + canonkey_t) | |||
| canonkey_l.update(Counter(treelet)) | |||
| return canonkey_l | |||
| return canonkey | |||
| def wrapper_get_canonkeys(node_label, edge_label, labeled, is_directed, itr_item): | |||
| g = itr_item[0] | |||
| i = itr_item[1] | |||
| return i, get_canonkeys(g, node_label, edge_label, labeled, is_directed) | |||
| def find_paths(G, source_node, length): | |||
| """Find all paths with a certain length those start from a source node. | |||
| A recursive depth first search is applied. | |||
| Parameters | |||
| ---------- | |||
| G : NetworkX graphs | |||
| The graph in which paths are searched. | |||
| source_node : integer | |||
| The number of the node from where all paths start. | |||
| length : integer | |||
| The length of paths. | |||
| Return | |||
| ------ | |||
| path : list of list | |||
| List of paths retrieved, where each path is represented by a list of nodes. | |||
| """ | |||
| if length == 0: | |||
| return [[source_node]] | |||
| path = [[source_node] + path for neighbor in G[source_node] \ | |||
| for path in find_paths(G, neighbor, length - 1) if source_node not in path] | |||
| return path | |||
| def find_all_paths(G, length, is_directed): | |||
| """Find all paths with a certain length in a graph. A recursive depth first | |||
| search is applied. | |||
| Parameters | |||
| ---------- | |||
| G : NetworkX graphs | |||
| The graph in which paths are searched. | |||
| length : integer | |||
| The length of paths. | |||
| Return | |||
| ------ | |||
| path : list of list | |||
| List of paths retrieved, where each path is represented by a list of nodes. | |||
| """ | |||
| all_paths = [] | |||
| for node in G: | |||
| all_paths.extend(find_paths(G, node, length)) | |||
| if not is_directed: | |||
| # For each path, two presentations are retrieved from its two extremities. | |||
| # Remove one of them. | |||
| all_paths_r = [path[::-1] for path in all_paths] | |||
| for idx, path in enumerate(all_paths[:-1]): | |||
| for path2 in all_paths_r[idx+1::]: | |||
| if path == path2: | |||
| all_paths[idx] = [] | |||
| break | |||
| all_paths = list(filter(lambda a: a != [], all_paths)) | |||
| return all_paths | |||
| @@ -31,6 +31,7 @@ def untilhpathkernel(*args, | |||
| n_jobs=None, | |||
| verbose=True): | |||
| """Calculate path graph kernels up to depth/hight h between graphs. | |||
| Parameters | |||
| ---------- | |||
| Gn : List of NetworkX graph | |||
| @@ -124,7 +125,7 @@ def untilhpathkernel(*args, | |||
| def init_worker(trie_toshare): | |||
| global G_trie | |||
| G_trie = trie_toshare | |||
| do_partial = partial(wrapper_uhpath_do_trie, k_func) | |||
| do_partial = partial(wrapper_uhpath_do_trie, k_func) | |||
| parallel_gm(do_partial, Kmatrix, Gn, init_worker=init_worker, | |||
| glbv=(all_paths,), n_jobs=n_jobs, verbose=verbose) | |||
| else: | |||
| @@ -84,7 +84,7 @@ def loadGXL(filename): | |||
| return g | |||
| def saveGXL(graph, filename, method='benoit'): | |||
| def saveGXL(graph, filename, method='gedlib'): | |||
| if method == 'benoit': | |||
| import xml.etree.ElementTree as ET | |||
| root_node = ET.Element('gxl') | |||
| @@ -124,23 +124,24 @@ def saveGXL(graph, filename, method='benoit'): | |||
| tree.write(filename) | |||
| elif method == 'gedlib': | |||
| # reference: https://github.com/dbblumenthal/gedlib/blob/master/data/generate_molecules.py#L22 | |||
| pass | |||
| # gxl_file = open(filename, 'w') | |||
| # gxl_file.write("<?xml version=\"1.0\"?>\n") | |||
| # gxl_file.write("<!DOCTYPE gxl SYSTEM \"http://www.gupro.de/GXL/gxl-1.0.dtd\">\n") | |||
| # gxl_file.write("<gxl>\n") | |||
| # gxl_file.write("<graph id=\"" + str(graph.graph['name']) + "\" edgeids=\"false\" edgemode=\"undirected\">\n") | |||
| # for v in graph: | |||
| # gxl_file.write("<node id=\"_" + str(v) + "\">\n") | |||
| # gxl_file.write("<attr name=\"chem\"><int>" + str(self.node_labels[node]) + "</int></attr>\n") | |||
| # gxl_file.write("</node>\n") | |||
| # for edge in self.edge_list: | |||
| # gxl_file.write("<edge from=\"_" + str(edge[0]) + "\" to=\"_" + str(edge[1]) + "\">\n") | |||
| # gxl_file.write("<attr name=\"valence\"><int>1</int></attr>\n") | |||
| # gxl_file.write("</edge>\n") | |||
| # gxl_file.write("</graph>\n") | |||
| # gxl_file.write("</gxl>\n") | |||
| # gxl_file.close() | |||
| # pass | |||
| gxl_file = open(filename, 'w') | |||
| gxl_file.write("<?xml version=\"1.0\"?>\n") | |||
| gxl_file.write("<!DOCTYPE gxl SYSTEM \"http://www.gupro.de/GXL/gxl-1.0.dtd\">\n") | |||
| gxl_file.write("<gxl>\n") | |||
| gxl_file.write("<graph id=\"" + str(graph.graph['name']) + "\" edgeids=\"true\" edgemode=\"undirected\">\n") | |||
| for v, attrs in graph.nodes(data=True): | |||
| gxl_file.write("<node id=\"_" + str(v) + "\">\n") | |||
| gxl_file.write("<attr name=\"" + "chem" + "\"><int>" + str(attrs['atom']) + "</int></attr>\n") | |||
| gxl_file.write("</node>\n") | |||
| for v1, v2, attrs in graph.edges(data=True): | |||
| gxl_file.write("<edge from=\"_" + str(v1) + "\" to=\"_" + str(v2) + "\">\n") | |||
| # gxl_file.write("<attr name=\"valence\"><int>" + str(attrs['bond_type']) + "</int></attr>\n") | |||
| gxl_file.write("<attr name=\"valence\"><int>" + "1" + "</int></attr>\n") | |||
| gxl_file.write("</edge>\n") | |||
| gxl_file.write("</graph>\n") | |||
| gxl_file.write("</gxl>\n") | |||
| gxl_file.close() | |||
| def loadSDF(filename): | |||
| @@ -57,6 +57,27 @@ def gaussiankernel(x, y, gamma=None): | |||
| return kernel | |||
| def polynomialkernel(x, y, d=1, c=0): | |||
| """Polynomial kernel. | |||
| Compute the polynomial kernel between x and y: | |||
| K(x, y) = (x^Ty)^d + c. | |||
| Parameters | |||
| ---------- | |||
| x, y : array | |||
| d : integer, default 1 | |||
| c : float, default 0 | |||
| Returns | |||
| ------- | |||
| kernel : float | |||
| """ | |||
| return np.dot(x, y) ** d + c | |||
| def kernelsum(k1, k2, d11, d12, d21=None, d22=None, lamda1=1, lamda2=1): | |||
| """Sum of a pair of kernels. | |||
| @@ -110,3 +131,7 @@ def kernelproduct(k1, k2, d11, d12, d21=None, d22=None, lamda=1): | |||
| else: | |||
| kernel = lamda * k1(d11, d12) * k2(d21, d22) | |||
| return kernel | |||
| if __name__ == '__main__': | |||
| o = polynomialkernel([1, 2], [3, 4], 2, 3) | |||
| @@ -145,7 +145,8 @@ def model_selection_for_precomputed_kernel(datafile, | |||
| # Kmatrix = np.random.rand(2250, 2250) | |||
| # current_run_time = 0.1 | |||
| # remove graphs whose kernels with themselves are zeros | |||
| # remove graphs whose kernels with themselves are zeros | |||
| # @todo: y not changed accordingly? | |||
| Kmatrix_diag = Kmatrix.diagonal().copy() | |||
| nb_g_ignore = 0 | |||
| for idxk, diag in enumerate(Kmatrix_diag): | |||
| @@ -154,6 +155,7 @@ def model_selection_for_precomputed_kernel(datafile, | |||
| Kmatrix = np.delete(Kmatrix, (idxk - nb_g_ignore), axis=1) | |||
| nb_g_ignore += 1 | |||
| # normalization | |||
| # @todo: works only for undirected graph? | |||
| Kmatrix_diag = Kmatrix.diagonal().copy() | |||
| for i in range(len(Kmatrix)): | |||
| for j in range(i, len(Kmatrix)): | |||
| @@ -1,5 +1,6 @@ | |||
| import networkx as nx | |||
| import numpy as np | |||
| from copy import deepcopy | |||
| #from itertools import product | |||
| # from tqdm import tqdm | |||
| @@ -183,3 +184,61 @@ def direct_product(G1, G2, node_label, edge_label): | |||
| # gt = nx.convert_node_labels_to_integers( | |||
| # gt, first_label=0, label_attribute='label_orignal') | |||
| return gt | |||
| def graph_deepcopy(G): | |||
| """Deep copy a graph, including deep copy of all nodes, edges and | |||
| attributes of the graph, nodes and edges. | |||
| Note | |||
| ---- | |||
| It is the same as the NetworkX function graph.copy(), as far as I know. | |||
| """ | |||
| # add graph attributes. | |||
| labels = {} | |||
| for k, v in G.graph.items(): | |||
| labels[k] = deepcopy(v) | |||
| if G.is_directed(): | |||
| G_copy = nx.DiGraph(**labels) | |||
| else: | |||
| G_copy = nx.Graph(**labels) | |||
| # add nodes | |||
| for nd, attrs in G.nodes(data=True): | |||
| labels = {} | |||
| for k, v in attrs.items(): | |||
| labels[k] = deepcopy(v) | |||
| G_copy.add_node(nd, **labels) | |||
| # add edges. | |||
| for nd1, nd2, attrs in G.edges(data=True): | |||
| labels = {} | |||
| for k, v in attrs.items(): | |||
| labels[k] = deepcopy(v) | |||
| G_copy.add_edge(nd1, nd2, **labels) | |||
| return G_copy | |||
| def graph_isIdentical(G1, G2): | |||
| """Check if two graphs are identical, including: same nodes, edges, node | |||
| labels/attributes, edge labels/attributes. | |||
| Notes | |||
| ---- | |||
| 1. The type of graphs has to be the same. | |||
| 2. Global/Graph attributes are neglected as they may contain names for graphs. | |||
| """ | |||
| # check nodes. | |||
| nlist1 = [n for n in G1.nodes(data=True)] | |||
| nlist2 = [n for n in G2.nodes(data=True)] | |||
| if not nlist1 == nlist2: | |||
| return False | |||
| # check edges. | |||
| elist1 = [n for n in G1.edges(data=True)] | |||
| elist2 = [n for n in G2.edges(data=True)] | |||
| if not elist1 == elist2: | |||
| return False | |||
| # check graph attributes. | |||
| return True | |||