Browse Source

更换网络为ResNet56; 保存当前版本到最后保存位置

master
shenyan 4 years ago
parent
commit
370e96c7f7
7 changed files with 258 additions and 190 deletions
  1. +42
    -36
      data_module.py
  2. +6
    -6
      main.py
  3. +0
    -51
      network/MLP_JDLU.py
  4. +0
    -41
      network/MLP_ReLU.py
  5. +185
    -0
      network/res_net.py
  6. +4
    -4
      save_checkpoint.py
  7. +21
    -52
      train_model.py

+ 42
- 36
data_module.py View File

@@ -1,9 +1,11 @@
import glob
import os import os
import numpy
import random
import torch import torch
from torch import Tensor
from torch.utils.data import Dataset, DataLoader from torch.utils.data import Dataset, DataLoader
import pytorch_lightning as pl import pytorch_lightning as pl
from PIL import Image
from torchvision import transforms




class DataModule(pl.LightningDataModule): class DataModule(pl.LightningDataModule):
@@ -17,47 +19,45 @@ class DataModule(pl.LightningDataModule):
self.dataset_path = dataset_path self.dataset_path = dataset_path


def setup(self, stage=None) -> None: def setup(self, stage=None) -> None:
# 得到全部数据的list
dataset_list = self.get_dataset_list()
k_fold_dataset_list = self.get_k_fold_dataset_list()
if stage == 'fit' or stage is None: if stage == 'fit' or stage is None:
dataset_train, dataset_val = self.get_dataset_lists(dataset_list)
self.train_dataset = CustomDataset(dataset_train, self.config)
self.val_dataset = CustomDataset(dataset_val, self.config)
dataset_train, dataset_val = self.get_fit_dataset_lists(k_fold_dataset_list)
self.train_dataset = CustomDataset(self.dataset_path, dataset_train, self.config, 'train')
self.val_dataset = CustomDataset(self.dataset_path, dataset_val, self.config, 'train')
if stage == 'test' or stage is None: if stage == 'test' or stage is None:
self.test_dataset = CustomDataset(dataset_list, self.config)
dataset_test = self.get_test_dataset_lists(k_fold_dataset_list)
self.test_dataset = CustomDataset(self.dataset_path, dataset_test, self.config, 'test')


def get_dataset_list(self):
if not os.path.exists(self.dataset_path + '/dataset_list.txt'):
# 针对数据拟合获得dataset
dataset = torch.randn(self.config['dataset_len'], self.config['dim_in'] + 1)
noise = torch.randn(self.config['dataset_len'])
dataset[:, self.config['dim_in']] = torch.cos(1.5 * dataset[:, 0]) * (dataset[:, 1] ** 2.0) + torch.cos(
torch.sin(dataset[:, 2] ** 3)) + torch.arctan(dataset[:, 4]) + noise
assert (dataset[torch.isnan(dataset)].shape[0] == 0)
written = [' '.join([str(temp) for temp in dataset[cou, :].tolist()]) for cou in range(dataset.shape[0])]
def get_k_fold_dataset_list(self):
# 得到用于K折分割的数据的list, 并生成文件夹进行保存
if not os.path.exists(self.dataset_path + '/k_fold_dataset_list.txt'):
# 获得用于k折分割的数据的list
dataset = glob.glob(self.dataset_path + '/train/image/*.png')
random.shuffle(dataset)
written = dataset


with open(self.dataset_path + '/dataset_list.txt', 'w', encoding='utf-8') as f:
with open(self.dataset_path + '/k_fold_dataset_list.txt', 'w', encoding='utf-8') as f:
for line in written: for line in written:
f.write(line + '\n')
print('已生成新的数据list')
f.write(line.replace('\\', '/') + '\n')
print('已生成新的k折数据list')
else: else:
dataset_list = open(self.dataset_path + '/dataset_list.txt').readlines()
# 针对数据拟合获得dataset
dataset_list = [[float(temp) for temp in item.strip('\n').split(' ')] for item in dataset_list]
dataset = torch.Tensor(dataset_list).float()

dataset = open(self.dataset_path + '/k_fold_dataset_list.txt').readlines()
dataset = [item.strip('\n') for item in dataset]
return dataset return dataset


def get_dataset_lists(self, dataset_list: Tensor):
def get_fit_dataset_lists(self, dataset_list: list):
# 得到一个fold的数据量和不够组成一个fold的剩余数据的数据量 # 得到一个fold的数据量和不够组成一个fold的剩余数据的数据量
num_1fold, remainder = divmod(self.config['dataset_len'], self.k_fold)
num_1fold, remainder = divmod(len(dataset_list), self.k_fold)
# 分割全部数据, 得到训练集, 验证集, 测试集 # 分割全部数据, 得到训练集, 验证集, 测试集
dataset_val = dataset_list[num_1fold * self.kth_fold:(num_1fold * (self.kth_fold + 1) + remainder), :]
temp = torch.ones(dataset_list.shape[0])
temp[num_1fold * self.kth_fold:(num_1fold * (self.kth_fold + 1) + remainder)] = 0
dataset_train = dataset_list[temp == 1]
dataset_val = dataset_list[num_1fold * self.kth_fold:(num_1fold * (self.kth_fold + 1) + remainder)]
del (dataset_list[num_1fold * self.kth_fold:(num_1fold * (self.kth_fold + 1) + remainder)])
dataset_train = dataset_list
return dataset_train, dataset_val return dataset_train, dataset_val


def get_test_dataset_lists(self, dataset_list):
dataset = glob.glob(self.dataset_path + '/test/image/*.png')
return dataset

def train_dataloader(self): def train_dataloader(self):
return DataLoader(self.train_dataset, batch_size=self.batch_size, shuffle=True, num_workers=self.num_workers, return DataLoader(self.train_dataset, batch_size=self.batch_size, shuffle=True, num_workers=self.num_workers,
pin_memory=True) pin_memory=True)
@@ -72,13 +72,19 @@ class DataModule(pl.LightningDataModule):




class CustomDataset(Dataset): class CustomDataset(Dataset):
def __init__(self, dataset, config):
def __init__(self, dataset_path, dataset, config, type):
super().__init__() super().__init__()
self.x = dataset[:, 0:config['dim_in']]
self.y = dataset[:, config['dim_in']]
self.dataset = dataset
self.trans = transforms.ToTensor()
self.labels = open(dataset_path + '/' + type + '/label.txt').readlines()


def __getitem__(self, idx): def __getitem__(self, idx):
return self.x[idx, :], self.y[idx]
image_path = self.dataset[idx]
image_name = os.path.basename(image_path)
image = Image.open(image_path)
image = self.trans(image)
label = torch.Tensor([int(self.labels[int(image_name.strip('.png'))].strip('\n'))])
return image_name, image, label.long()


def __len__(self): def __len__(self):
return self.x.shape[0]
return len(self.dataset)

+ 6
- 6
main.py View File

@@ -32,15 +32,15 @@ def main(stage,
:param precision: 训练精度, 正常精度为32, 半精度为16, 也可以是64. 精度代表每个参数的类型所占的位数 :param precision: 训练精度, 正常精度为32, 半精度为16, 也可以是64. 精度代表每个参数的类型所占的位数
:param seed: :param seed:


:param dataset_path: 数据集地址, 其目录下包含数据集, 标签, 全部数据的命名list
:param dataset_path: 数据集地址, 其目录下包含数据集文件夹, 标签文件夹, 全部数据的命名list
:param gpus: :param gpus:
:param tpu_cores: :param tpu_cores:
:param version_nth: 该folds的第一个版本的版本号
:param version_nth: 不论是重载训练还是测试, 固定为该folds的第一个版本的版本号
:param path_final_save: :param path_final_save:
:param every_n_epochs: 每n个epoch设置一个检查点 :param every_n_epochs: 每n个epoch设置一个检查点
:param save_top_k: :param save_top_k:
:param kth_fold_start: 从第几个fold开始, 若使用重载训练, 则kth_fold_start为重载第几个fold, 第一个值为0. :param kth_fold_start: 从第几个fold开始, 若使用重载训练, 则kth_fold_start为重载第几个fold, 第一个值为0.
非重载训练的情况下, 可以通过调整该值控制训练的次数
非重载训练的情况下, 可以通过调整该值控制训练的次数;
:param k_fold: :param k_fold:
""" """
# 经常改动的 参数 作为main的输入参数 # 经常改动的 参数 作为main的输入参数
@@ -70,8 +70,8 @@ def main(stage,
save_checkpoint = SaveCheckpoint(seed=seed, max_epochs=max_epochs, save_checkpoint = SaveCheckpoint(seed=seed, max_epochs=max_epochs,
path_final_save=path_final_save, path_final_save=path_final_save,
every_n_epochs=every_n_epochs, verbose=True, every_n_epochs=every_n_epochs, verbose=True,
monitor='Validation loss', save_top_k=save_top_k,
mode='min')
monitor='Validation acc', save_top_k=save_top_k,
mode='max')
training_module = TrainModule(config=config) training_module = TrainModule(config=config)
if kth_fold != kth_fold_start or load_checkpoint_path is None: if kth_fold != kth_fold_start or load_checkpoint_path is None:
print('进行初始训练') print('进行初始训练')
@@ -101,6 +101,6 @@ def main(stage,
if __name__ == "__main__": if __name__ == "__main__":
main('fit', max_epochs=2, batch_size=32, precision=16, seed=1234, dataset_path='./dataset', k_fold=5, main('fit', max_epochs=2, batch_size=32, precision=16, seed=1234, dataset_path='./dataset', k_fold=5,
# gpus=1, # gpus=1,
# version_nth=8, # 该folds的第一个版本的版本号
# version_nth=8,
kth_fold_start=4, kth_fold_start=4,
) )

+ 0
- 51
network/MLP_JDLU.py View File

@@ -1,51 +0,0 @@
import math

import torch.nn as nn
from network_module.activation import jdlu, JDLU


class MLPLayer(nn.Module):
def __init__(self, dim_in, dim_out, res_coef=0.0, dropout_p=0.1):
super().__init__()
self.linear = nn.Linear(dim_in, dim_out)
self.res_coef = res_coef
self.activation = JDLU(dim_out)
self.dropout = nn.Dropout(dropout_p)
self.ln = nn.LayerNorm(dim_out)

def forward(self, x):
y = self.linear(x)
y = self.activation(y)
y = self.dropout(y)
if self.res_coef == 0:
return y
else:
return self.res_coef * x + y


class MLP_JDLU(nn.Module):
def __init__(self, dim_in, dim, res_coef=0.5, dropout_p=0.1, n_layers=10):
super().__init__()
self.mlp = nn.ModuleList()
self.first_linear = MLPLayer(dim_in, dim)
self.n_layers = n_layers
for i in range(n_layers):
self.mlp.append(MLPLayer(dim, dim, res_coef, dropout_p))
self.final = nn.Linear(dim, 1)
self.apply(self.weight_init)

def forward(self, x):
x = self.first_linear(x)
for layer in self.mlp:
x = layer(x)
x = self.final(x)
return x.squeeze()

@staticmethod
def weight_init(m):
if isinstance(m, nn.Linear):
nn.init.xavier_normal_(m.weight)

fan_in, _ = nn.init._calculate_fan_in_and_fan_out(m.weight)
bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
nn.init.uniform_(m.bias, -bound, bound)

+ 0
- 41
network/MLP_ReLU.py View File

@@ -1,41 +0,0 @@
import torch.nn as nn
from network_module.activation import jdlu, JDLU


class MLPLayer(nn.Module):
def __init__(self, dim_in, dim_out, res_coef=0.0, dropout_p=0.1):
super().__init__()
self.linear = nn.Linear(dim_in, dim_out)
self.res_coef = res_coef
self.activation = nn.ReLU()
self.activation1 = JDLU(dim_out)
self.dropout = nn.Dropout(dropout_p)
self.ln = nn.LayerNorm(dim_out)

def forward(self, x):
y = self.linear(x)
y = self.activation1(y)
# y = jdlu(y)
y = self.dropout(y)
if self.res_coef == 0:
return self.ln(y)
else:
return self.ln(self.res_coef * x + y)


class MLP(nn.Module):
def __init__(self, dim_in, dim, res_coef=0.5, dropout_p=0.1, n_layers=10):
super().__init__()
self.mlp = nn.ModuleList()
self.first_linear = MLPLayer(dim_in, dim)
self.n_layers = n_layers
for i in range(n_layers):
self.mlp.append(MLPLayer(dim, dim, res_coef, dropout_p))
self.final = nn.Linear(dim, 1)

def forward(self, x):
x = self.first_linear(x)
for layer in self.mlp:
x = layer(x)
x = self.final(x)
return x.squeeze()

+ 185
- 0
network/res_net.py View File

@@ -0,0 +1,185 @@
'''
Properly implemented ResNet-s for CIFAR10 as described in paper [1].

The implementation and structure of this file is hugely influenced by [2]
which is implemented for ImageNet and doesn't have option A for identity.
Moreover, most of the implementations on the web is copy-paste from
torchvision's resnet and has wrong number of params.

Proper ResNet-s for CIFAR10 (for fair comparision and etc.) has following
number of layers and parameters:

name | layers | params
ResNet20 | 20 | 0.27M
ResNet32 | 32 | 0.46M
ResNet44 | 44 | 0.66M
ResNet56 | 56 | 0.85M
ResNet110 | 110 | 1.7M
ResNet1202| 1202 | 19.4m

which this implementation indeed has.

Reference:
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
Deep Residual Learning for Image Recognition. arXiv:1512.03385
[2] https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py

If you use this implementation in you work, please don't forget to mention the
author, Yerlan Idelbayev.
'''
import math

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init

from torch.autograd import Variable

__all__ = ['ResNet', 'resnet20', 'resnet32', 'resnet44', 'resnet56', 'resnet110', 'resnet1202']


def _weights_init(m):
if isinstance(m, nn.Linear):
nn.init.kaiming_normal_(m.weight)

fan_in, _ = nn.init._calculate_fan_in_and_fan_out(m.weight)
bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
nn.init.uniform_(m.bias, -bound, bound)

elif isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight)


class LambdaLayer(nn.Module):
def __init__(self, lambd):
super(LambdaLayer, self).__init__()
self.lambd = lambd

def forward(self, x):
return self.lambd(x)


class BasicBlock(nn.Module):
expansion = 1

def __init__(self, in_planes, planes, stride=1, option='A'):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)

self.shortcut = nn.Sequential()
if stride != 1 or in_planes != planes:
if option == 'A':
"""
For CIFAR10 ResNet paper uses option A.
"""
self.shortcut = LambdaLayer(lambda x:
F.pad(x[:, :, ::2, ::2], (0, 0, 0, 0, planes // 4, planes // 4), "constant",
0))
elif option == 'B':
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion * planes)
)

def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out


class ResNet(nn.Module):
def __init__(self, block, num_blocks, num_classes=10):
super(ResNet, self).__init__()
self.in_planes = 16

self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(16)
self.layer1 = self._make_layer(block, 16, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 32, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 64, num_blocks[2], stride=2)
self.linear = nn.Linear(64, num_classes)

self.apply(_weights_init)

def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1] * (num_blocks - 1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion

return nn.Sequential(*layers)

def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = F.avg_pool2d(out, out.size()[3])
out = out.view(out.size(0), -1)
out = self.linear(out)
return out


def resnet20():
return ResNet(BasicBlock, [3, 3, 3])


def resnet32():
return ResNet(BasicBlock, [5, 5, 5])


def resnet44():
return ResNet(BasicBlock, [7, 7, 7])


def resnet56():
return ResNet(BasicBlock, [9, 9, 9], num_classes=100)


def resnet110():
return ResNet(BasicBlock, [18, 18, 18])


def resnet1202():
return ResNet(BasicBlock, [200, 200, 200])


def test(net):
import numpy as np
total_params = 0

for x in filter(lambda p: p.requires_grad, net.parameters()):
total_params += np.prod(x.data.numpy().shape)
print("Total number of params", total_params)
print("Total layers", len(list(filter(lambda p: p.requires_grad and len(p.data.size()) > 1, net.parameters()))))


def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)

_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))

res = []
for k in topk:
correct_k = correct[:k].contiguous().view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res


if __name__ == "__main__":
for net_name in __all__:
if net_name.startswith('resnet'):
print(net_name)
test(globals()[net_name]())
print()

+ 4
- 4
save_checkpoint.py View File

@@ -92,10 +92,10 @@ class SaveCheckpoint(ModelCheckpoint):
f.write(line + '\n') f.write(line + '\n')
# 每次更新ckpt文件后, 将其存放到另一个位置 # 每次更新ckpt文件后, 将其存放到另一个位置
if self.path_final_save is not None: if self.path_final_save is not None:
zip_dir('./logs', './logs.zip')
if os.path.exists(self.path_final_save + '/logs.zip'):
os.remove(self.path_final_save + '/logs.zip')
shutil.move('./logs.zip', self.path_final_save)
zip_dir('./logs/default/' + self.dirpath.split('\\')[1], './' + self.dirpath.split('\\')[1] + '.zip')
if os.path.exists(self.path_final_save + '/' + self.dirpath.split('\\')[1] + '.zip'):
os.remove(self.path_final_save + '/' + self.dirpath.split('\\')[1] + '.zip')
shutil.move('./' + self.dirpath.split('\\')[1] + '.zip', self.path_final_save)
elif self.verbose: elif self.verbose:
epoch = monitor_candidates.get("epoch") epoch = monitor_candidates.get("epoch")
step = monitor_candidates.get("step") step = monitor_candidates.get("step")


+ 21
- 52
train_model.py View File

@@ -6,8 +6,7 @@ from pytorch_lightning.utilities.types import EPOCH_OUTPUT
from torch import nn from torch import nn
import torch import torch


from network.MLP_JDLU import MLP_JDLU
from network.MLP_ReLU import MLP_ReLU
from network.res_net import resnet56, accuracy




class TrainModule(pl.LightningModule): class TrainModule(pl.LightningModule):
@@ -15,30 +14,32 @@ class TrainModule(pl.LightningModule):
super().__init__() super().__init__()
self.time_sum = None self.time_sum = None
self.config = config self.config = config
if 1:
self.net = MLP_ReLU(config['dim_in'], config['dim'], config['res_coef'], config['dropout_p'],
config['n_layers'])
else:
self.net = MLP_JDLU(config['dim_in'], config['dim'], config['res_coef'], config['dropout_p'],
config['n_layers'])
self.loss = nn.MSELoss()
self.net = resnet56()
self.loss = nn.CrossEntropyLoss()


def training_step(self, batch, batch_idx): def training_step(self, batch, batch_idx):
x, y = batch
x = self.net(x)
loss = self.loss(x, y.type(torch.float32))
_, input, label = batch
label = label.flatten()
pred = self.net(input)
loss = self.loss(pred, label)
self.log("Training loss", loss) self.log("Training loss", loss)
acc = accuracy(pred, label)[0]
self.log("Training acc", acc)
return loss return loss


def validation_step(self, batch, batch_idx): def validation_step(self, batch, batch_idx):
x, y = batch
x = self.net(x)
loss = self.loss(x, y.type(torch.float32))
_, input, label = batch
label = label.flatten()
pred = self.net(input)
loss = self.loss(pred, label)
self.log("Validation loss", loss) self.log("Validation loss", loss)
acc = accuracy(pred, label)[0]
self.log("Validation acc", acc)
return loss return loss


def test_step(self, batch, batch_idx): def test_step(self, batch, batch_idx):
input, label = batch
_, input, label = batch
label = label.flatten()
if self.time_sum is None: if self.time_sum is None:
time_start = time.time() time_start = time.time()
pred = self.net(input) pred = self.net(input)
@@ -47,46 +48,14 @@ class TrainModule(pl.LightningModule):
print(f'\n推理时间为: {self.time_sum:f}') print(f'\n推理时间为: {self.time_sum:f}')
else: else:
pred = self.net(input) pred = self.net(input)
loss = self.loss(pred.reshape(1), label.type(torch.float32))
loss = self.loss(pred, label)
self.log("Test loss", loss) self.log("Test loss", loss)
acc = accuracy(pred, label)[0]
self.log("Test acc", acc)
return input, label, pred return input, label, pred


def test_epoch_end(self, outputs: EPOCH_OUTPUT) -> None:
records = numpy.empty((self.config['dataset_len'], 4))
# count
for cou in range(len(outputs)):
records[cou, 0] = outputs[cou][0][0, 0]
records[cou, 1] = outputs[cou][0][0, 1]
records[cou, 2] = outputs[cou][1][0]
records[cou, 3] = outputs[cou][2]

import plotly.graph_objects as go
trace0 = go.Mesh3d(x=records[:, 0],
y=records[:, 1],
z=records[:, 2],
opacity=0.5,
name='label'
)
trace1 = go.Mesh3d(x=records[:, 0],
y=records[:, 1],
z=records[:, 3],
opacity=0.5,
name='pred'
)
fig = go.Figure(data=[trace0, trace1])
fig.update_layout(
scene=dict(
# xaxis=dict(nticks=4, range=[-100, 100], ),
# yaxis=dict(nticks=4, range=[-50, 100], ),
# zaxis=dict(nticks=4, range=[-100, 100], ),
aspectratio=dict(x=1, y=1, z=0.5),
),

)
fig.show()

def configure_optimizers(self): def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
optimizer = torch.optim.SGD(self.parameters(), lr=0.1, momentum=0.9, weight_decay=1e-4)
return optimizer return optimizer


def load_pretrain_parameters(self): def load_pretrain_parameters(self):


Loading…
Cancel
Save