|
- '''
- Properly implemented ResNet-s for CIFAR10 as described in paper [1].
-
- The implementation and structure of this file is hugely influenced by [2]
- which is implemented for ImageNet and doesn't have option A for identity.
- Moreover, most of the implementations on the web is copy-paste from
- torchvision's resnet and has wrong number of params.
-
- Proper ResNet-s for CIFAR10 (for fair comparision and etc.) has following
- number of layers and parameters:
-
- name | layers | params
- ResNet20 | 20 | 0.27M
- ResNet32 | 32 | 0.46M
- ResNet44 | 44 | 0.66M
- ResNet56 | 56 | 0.85M
- ResNet110 | 110 | 1.7M
- ResNet1202| 1202 | 19.4m
-
- which this implementation indeed has.
-
- Reference:
- [1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
- Deep Residual Learning for Image Recognition. arXiv:1512.03385
- [2] https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
-
- If you use this implementation in you work, please don't forget to mention the
- author, Yerlan Idelbayev.
- '''
- import math
-
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- import torch.nn.init as init
-
- from torch.autograd import Variable
-
- __all__ = ['ResNet', 'resnet20', 'resnet32', 'resnet44', 'resnet56', 'resnet110', 'resnet1202']
-
-
- def _weights_init(m):
- if isinstance(m, nn.Linear):
- nn.init.kaiming_normal_(m.weight)
-
- fan_in, _ = nn.init._calculate_fan_in_and_fan_out(m.weight)
- bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
- nn.init.uniform_(m.bias, -bound, bound)
-
- elif isinstance(m, nn.Conv2d):
- nn.init.kaiming_normal_(m.weight)
-
-
- class LambdaLayer(nn.Module):
- def __init__(self, lambd):
- super(LambdaLayer, self).__init__()
- self.lambd = lambd
-
- def forward(self, x):
- return self.lambd(x)
-
-
- class BasicBlock(nn.Module):
- expansion = 1
-
- def __init__(self, in_planes, planes, stride=1, option='A'):
- super(BasicBlock, self).__init__()
- self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
- self.bn1 = nn.BatchNorm2d(planes)
- self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
- self.bn2 = nn.BatchNorm2d(planes)
-
- self.shortcut = nn.Sequential()
- if stride != 1 or in_planes != planes:
- if option == 'A':
- """
- For CIFAR10 ResNet paper uses option A.
- """
- self.shortcut = LambdaLayer(lambda x:
- F.pad(x[:, :, ::2, ::2], (0, 0, 0, 0, planes // 4, planes // 4), "constant",
- 0))
- elif option == 'B':
- self.shortcut = nn.Sequential(
- nn.Conv2d(in_planes, self.expansion * planes, kernel_size=1, stride=stride, bias=False),
- nn.BatchNorm2d(self.expansion * planes)
- )
-
- def forward(self, x):
- out = F.relu(self.bn1(self.conv1(x)))
- out = self.bn2(self.conv2(out))
- out += self.shortcut(x)
- out = F.relu(out)
- return out
-
-
- class ResNet(nn.Module):
- def __init__(self, block, num_blocks, num_classes=10):
- super(ResNet, self).__init__()
- self.in_planes = 16
-
- self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False)
- self.bn1 = nn.BatchNorm2d(16)
- self.layer1 = self._make_layer(block, 16, num_blocks[0], stride=1)
- self.layer2 = self._make_layer(block, 32, num_blocks[1], stride=2)
- self.layer3 = self._make_layer(block, 64, num_blocks[2], stride=2)
- self.linear = nn.Linear(64, num_classes)
-
- self.apply(_weights_init)
-
- def _make_layer(self, block, planes, num_blocks, stride):
- strides = [stride] + [1] * (num_blocks - 1)
- layers = []
- for stride in strides:
- layers.append(block(self.in_planes, planes, stride))
- self.in_planes = planes * block.expansion
-
- return nn.Sequential(*layers)
-
- def forward(self, x):
- out = F.relu(self.bn1(self.conv1(x)))
- out = self.layer1(out)
- out = self.layer2(out)
- out = self.layer3(out)
- out = F.avg_pool2d(out, out.size()[3])
- out = out.view(out.size(0), -1)
- out = self.linear(out)
- return out
-
-
- def resnet20():
- return ResNet(BasicBlock, [3, 3, 3])
-
-
- def resnet32():
- return ResNet(BasicBlock, [5, 5, 5])
-
-
- def resnet44():
- return ResNet(BasicBlock, [7, 7, 7])
-
-
- def resnet56():
- return ResNet(BasicBlock, [9, 9, 9], num_classes=100)
-
-
- def resnet110():
- return ResNet(BasicBlock, [18, 18, 18])
-
-
- def resnet1202():
- return ResNet(BasicBlock, [200, 200, 200])
-
-
- def test(net):
- import numpy as np
- total_params = 0
-
- for x in filter(lambda p: p.requires_grad, net.parameters()):
- total_params += np.prod(x.data.numpy().shape)
- print("Total number of params", total_params)
- print("Total layers", len(list(filter(lambda p: p.requires_grad and len(p.data.size()) > 1, net.parameters()))))
-
-
- def accuracy(output, target, topk=(1,)):
- """Computes the precision@k for the specified values of k"""
- maxk = max(topk)
- batch_size = target.size(0)
-
- _, pred = output.topk(maxk, 1, True, True)
- pred = pred.t()
- correct = pred.eq(target.view(1, -1).expand_as(pred))
-
- res = []
- for k in topk:
- correct_k = correct[:k].contiguous().view(-1).float().sum(0)
- res.append(correct_k.mul_(100.0 / batch_size))
- return res
-
-
- if __name__ == "__main__":
- for net_name in __all__:
- if net_name.startswith('resnet'):
- print(net_name)
- test(globals()[net_name]())
- print()
|