|
- using System;
- using System.Collections.Generic;
- using System.Text;
- using Tensorflow;
- using NumSharp.Core;
- using System.Linq;
-
- namespace TensorFlowNET.Examples
- {
- /// <summary>
- /// https://github.com/nicolov/naive_bayes_tensorflow
- /// </summary>
- public class NaiveBayesClassifier : Python, IExample
- {
- public int Priority => 100;
- public bool Enabled => true;
- public string Name => "Naive Bayes Classifier";
-
- public Normal dist { get; set; }
- public bool Run()
- {
- var X = np.array<double>(new double[][] { new double[] { 5.1, 3.5},new double[] { 4.9, 3.0 },new double[] { 4.7, 3.2 },
- new double[] { 4.6, 3.1 },new double[] { 5.0, 3.6 },new double[] { 5.4, 3.9 },
- new double[] { 4.6, 3.4 },new double[] { 5.0, 3.4 },new double[] { 4.4, 2.9 },
- new double[] { 4.9, 3.1 },new double[] { 5.4, 3.7 },new double[] {4.8, 3.4 },
- new double[] {4.8, 3.0 },new double[] {4.3, 3.0 },new double[] {5.8, 4.0 },
- new double[] {5.7, 4.4 },new double[] {5.4, 3.9 },new double[] {5.1, 3.5 },
- new double[] {5.7, 3.8 },new double[] {5.1, 3.8 },new double[] {5.4, 3.4 },
- new double[] {5.1, 3.7 },new double[] {5.1, 3.3 },new double[] {4.8, 3.4 },
- new double[] {5.0 , 3.0 },new double[] {5.0 , 3.4 },new double[] {5.2, 3.5 },
- new double[] {5.2, 3.4 },new double[] {4.7, 3.2 },new double[] {4.8, 3.1 },
- new double[] {5.4, 3.4 },new double[] {5.2, 4.1},new double[] {5.5, 4.2 },
- new double[] {4.9, 3.1 },new double[] {5.0 , 3.2 },new double[] {5.5, 3.5 },
- new double[] {4.9, 3.6 },new double[] {4.4, 3.0 },new double[] {5.1, 3.4 },
- new double[] {5.0 , 3.5 },new double[] {4.5, 2.3 },new double[] {4.4, 3.2 },
- new double[] {5.0 , 3.5 },new double[] {5.1, 3.8 },new double[] {4.8, 3.0},
- new double[] {5.1, 3.8 },new double[] {4.6, 3.2 },new double[] { 5.3, 3.7 },
- new double[] {5.0 , 3.3 },new double[] {7.0 , 3.2 },new double[] {6.4, 3.2 },
- new double[] {6.9, 3.1 },new double[] {5.5, 2.3 },new double[] {6.5, 2.8 },
- new double[] {5.7, 2.8 },new double[] {6.3, 3.3 },new double[] {4.9, 2.4 },
- new double[] {6.6, 2.9 },new double[] {5.2, 2.7 },new double[] {5.0 , 2.0 },
- new double[] {5.9, 3.0 },new double[] {6.0 , 2.2 },new double[] {6.1, 2.9 },
- new double[] {5.6, 2.9 },new double[] {6.7, 3.1 },new double[] {5.6, 3.0 },
- new double[] {5.8, 2.7 },new double[] {6.2, 2.2 },new double[] {5.6, 2.5 },
- new double[] {5.9, 3.0},new double[] {6.1, 2.8},new double[] {6.3, 2.5},
- new double[] {6.1, 2.8},new double[] {6.4, 2.9},new double[] {6.6, 3.0 },
- new double[] {6.8, 2.8},new double[] {6.7, 3.0 },new double[] {6.0 , 2.9},
- new double[] {5.7, 2.6},new double[] {5.5, 2.4},new double[] {5.5, 2.4},
- new double[] {5.8, 2.7},new double[] {6.0 , 2.7},new double[] {5.4, 3.0 },
- new double[] {6.0 , 3.4},new double[] {6.7, 3.1},new double[] {6.3, 2.3},
- new double[] {5.6, 3.0 },new double[] {5.5, 2.5},new double[] {5.5, 2.6},
- new double[] {6.1, 3.0 },new double[] {5.8, 2.6},new double[] {5.0 , 2.3},
- new double[] {5.6, 2.7},new double[] {5.7, 3.0 },new double[] {5.7, 2.9},
- new double[] {6.2, 2.9},new double[] {5.1, 2.5},new double[] {5.7, 2.8},
- new double[] {6.3, 3.3},new double[] {5.8, 2.7},new double[] {7.1, 3.0 },
- new double[] {6.3, 2.9},new double[] {6.5, 3.0 },new double[] {7.6, 3.0 },
- new double[] {4.9, 2.5},new double[] {7.3, 2.9},new double[] {6.7, 2.5},
- new double[] {7.2, 3.6},new double[] {6.5, 3.2},new double[] {6.4, 2.7},
- new double[] {6.8, 3.00 },new double[] {5.7, 2.5},new double[] {5.8, 2.8},
- new double[] {6.4, 3.2},new double[] {6.5, 3.0 },new double[] {7.7, 3.8},
- new double[] {7.7, 2.6},new double[] {6.0 , 2.2},new double[] {6.9, 3.2},
- new double[] {5.6, 2.8},new double[] {7.7, 2.8},new double[] {6.3, 2.7},
- new double[] {6.7, 3.3},new double[] {7.2, 3.2},new double[] {6.2, 2.8},
- new double[] {6.1, 3.0 },new double[] {6.4, 2.8},new double[] {7.2, 3.0 },
- new double[] {7.4, 2.8},new double[] {7.9, 3.8},new double[] {6.4, 2.8},
- new double[] {6.3, 2.8},new double[] {6.1, 2.6},new double[] {7.7, 3.0 },
- new double[] {6.3, 3.4},new double[] {6.4, 3.1},new double[] {6.0, 3.0},
- new double[] {6.9, 3.1},new double[] {6.7, 3.1},new double[] {6.9, 3.1},
- new double[] {5.8, 2.7},new double[] {6.8, 3.2},new double[] {6.7, 3.3},
- new double[] {6.7, 3.0 },new double[] {6.3, 2.5},new double[] {6.5, 3.0 },
- new double[] {6.2, 3.4},new double[] {5.9, 3.0 }, new double[] {5.8, 3.0 }});
-
- var y = np.array<int>(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
- 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
- 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2);
- fit(X, y);
- // Create a regular grid and classify each point
- double x_min = (double) X.amin(0)[0] - 0.5;
- double y_min = (double) X.amin(0)[1] - 0.5;
- double x_max = (double) X.amax(0)[0] + 0.5;
- double y_max = (double) X.amax(0)[1] + 0.5;
-
- var (xx, yy) = np.meshgrid(np.linspace(x_min, x_max, 30), np.linspace(y_min, y_max, 30));
- var s = tf.Session();
- var samples = np.vstack(xx.ravel(), yy.ravel());
- var Z = s.run(predict(samples));
-
-
- return true;
- }
-
- public void fit(NDArray X, NDArray y)
- {
- NDArray unique_y = y.unique<long>();
-
- Dictionary<long, List<List<double>>> dic = new Dictionary<long, List<List<double>>>();
- // Init uy in dic
- foreach (int uy in unique_y.Data<int>())
- {
- dic.Add(uy, new List<List<double>>());
- }
- // Separate training points by class
- // Shape : nb_classes * nb_samples * nb_features
- int maxCount = 0;
- for (int i = 0; i < y.size; i++)
- {
- long curClass = (long)y[i];
- List<List<double>> l = dic[curClass];
- List<double> pair = new List<double>();
- pair.Add((double)X[i,0]);
- pair.Add((double)X[i, 1]);
- l.Add(pair);
- if (l.Count > maxCount)
- {
- maxCount = l.Count;
- }
- dic[curClass] = l;
- }
- double[,,] points = new double[dic.Count, maxCount, X.shape[1]];
- foreach (KeyValuePair<long, List<List<double>>> kv in dic)
- {
- int j = (int) kv.Key;
- for (int i = 0; i < maxCount; i++)
- {
- for (int k = 0; k < X.shape[1]; k++)
- {
- points[j, i, k] = kv.Value[i][k];
- }
- }
-
- }
- NDArray points_by_class = np.array<double>(points);
- // estimate mean and variance for each class / feature
- // shape : nb_classes * nb_features
- var cons = tf.constant(points_by_class);
- var tup = tf.nn.moments(cons, new int[]{1});
- var mean = tup.Item1;
- var variance = tup.Item2;
-
- // Create a 3x2 univariate normal distribution with the
- // Known mean and variance
- var dist = tf.distributions.Normal(mean, tf.sqrt(variance));
- this.dist = dist;
- }
-
- public Tensor predict (NDArray X)
- {
- if (dist == null)
- {
- throw new ArgumentNullException("cant not find the model (normal distribution)!");
- }
- int nb_classes = (int) dist.scale().shape[0];
- int nb_features = (int)dist.scale().shape[1];
-
- // Conditional probabilities log P(x|c) with shape
- // (nb_samples, nb_classes)
- var t1= ops.convert_to_tensor(X, TF_DataType.TF_DOUBLE);
- //var t2 = ops.convert_to_tensor(new int[] { 1, nb_classes });
- //Tensor tile = tf.tile(t1, t2);
- Tensor tile = tf.tile(X, new int[] { 1, nb_classes });
- Tensor r = tf.reshape(tile, new Tensor(new int[] { -1, nb_classes, nb_features }));
- var cond_probs = tf.reduce_sum(dist.log_prob(r));
- // uniform priors
- var priors = np.log(np.array<double>((1.0 / nb_classes) * nb_classes));
-
- // posterior log probability, log P(c) + log P(x|c)
- var joint_likelihood = tf.add(new Tensor(priors), cond_probs);
- // normalize to get (log)-probabilities
-
- var norm_factor = tf.reduce_logsumexp(joint_likelihood, new int[] { 1 }, true);
- var log_prob = joint_likelihood - norm_factor;
- // exp to get the actual probabilities
- return tf.exp(log_prob);
- }
-
- public void PrepareData()
- {
-
- }
- }
- }
|