using System; using System.Collections.Generic; using System.Text; using Tensorflow; using NumSharp.Core; using System.Linq; namespace TensorFlowNET.Examples { /// /// https://github.com/nicolov/naive_bayes_tensorflow /// public class NaiveBayesClassifier : Python, IExample { public int Priority => 100; public bool Enabled => true; public string Name => "Naive Bayes Classifier"; public Normal dist { get; set; } public bool Run() { var X = np.array(new double[][] { new double[] { 5.1, 3.5},new double[] { 4.9, 3.0 },new double[] { 4.7, 3.2 }, new double[] { 4.6, 3.1 },new double[] { 5.0, 3.6 },new double[] { 5.4, 3.9 }, new double[] { 4.6, 3.4 },new double[] { 5.0, 3.4 },new double[] { 4.4, 2.9 }, new double[] { 4.9, 3.1 },new double[] { 5.4, 3.7 },new double[] {4.8, 3.4 }, new double[] {4.8, 3.0 },new double[] {4.3, 3.0 },new double[] {5.8, 4.0 }, new double[] {5.7, 4.4 },new double[] {5.4, 3.9 },new double[] {5.1, 3.5 }, new double[] {5.7, 3.8 },new double[] {5.1, 3.8 },new double[] {5.4, 3.4 }, new double[] {5.1, 3.7 },new double[] {5.1, 3.3 },new double[] {4.8, 3.4 }, new double[] {5.0 , 3.0 },new double[] {5.0 , 3.4 },new double[] {5.2, 3.5 }, new double[] {5.2, 3.4 },new double[] {4.7, 3.2 },new double[] {4.8, 3.1 }, new double[] {5.4, 3.4 },new double[] {5.2, 4.1},new double[] {5.5, 4.2 }, new double[] {4.9, 3.1 },new double[] {5.0 , 3.2 },new double[] {5.5, 3.5 }, new double[] {4.9, 3.6 },new double[] {4.4, 3.0 },new double[] {5.1, 3.4 }, new double[] {5.0 , 3.5 },new double[] {4.5, 2.3 },new double[] {4.4, 3.2 }, new double[] {5.0 , 3.5 },new double[] {5.1, 3.8 },new double[] {4.8, 3.0}, new double[] {5.1, 3.8 },new double[] {4.6, 3.2 },new double[] { 5.3, 3.7 }, new double[] {5.0 , 3.3 },new double[] {7.0 , 3.2 },new double[] {6.4, 3.2 }, new double[] {6.9, 3.1 },new double[] {5.5, 2.3 },new double[] {6.5, 2.8 }, new double[] {5.7, 2.8 },new double[] {6.3, 3.3 },new double[] {4.9, 2.4 }, new double[] {6.6, 2.9 },new double[] {5.2, 2.7 },new double[] {5.0 , 2.0 }, new double[] {5.9, 3.0 },new double[] {6.0 , 2.2 },new double[] {6.1, 2.9 }, new double[] {5.6, 2.9 },new double[] {6.7, 3.1 },new double[] {5.6, 3.0 }, new double[] {5.8, 2.7 },new double[] {6.2, 2.2 },new double[] {5.6, 2.5 }, new double[] {5.9, 3.0},new double[] {6.1, 2.8},new double[] {6.3, 2.5}, new double[] {6.1, 2.8},new double[] {6.4, 2.9},new double[] {6.6, 3.0 }, new double[] {6.8, 2.8},new double[] {6.7, 3.0 },new double[] {6.0 , 2.9}, new double[] {5.7, 2.6},new double[] {5.5, 2.4},new double[] {5.5, 2.4}, new double[] {5.8, 2.7},new double[] {6.0 , 2.7},new double[] {5.4, 3.0 }, new double[] {6.0 , 3.4},new double[] {6.7, 3.1},new double[] {6.3, 2.3}, new double[] {5.6, 3.0 },new double[] {5.5, 2.5},new double[] {5.5, 2.6}, new double[] {6.1, 3.0 },new double[] {5.8, 2.6},new double[] {5.0 , 2.3}, new double[] {5.6, 2.7},new double[] {5.7, 3.0 },new double[] {5.7, 2.9}, new double[] {6.2, 2.9},new double[] {5.1, 2.5},new double[] {5.7, 2.8}, new double[] {6.3, 3.3},new double[] {5.8, 2.7},new double[] {7.1, 3.0 }, new double[] {6.3, 2.9},new double[] {6.5, 3.0 },new double[] {7.6, 3.0 }, new double[] {4.9, 2.5},new double[] {7.3, 2.9},new double[] {6.7, 2.5}, new double[] {7.2, 3.6},new double[] {6.5, 3.2},new double[] {6.4, 2.7}, new double[] {6.8, 3.00 },new double[] {5.7, 2.5},new double[] {5.8, 2.8}, new double[] {6.4, 3.2},new double[] {6.5, 3.0 },new double[] {7.7, 3.8}, new double[] {7.7, 2.6},new double[] {6.0 , 2.2},new double[] {6.9, 3.2}, new double[] {5.6, 2.8},new double[] {7.7, 2.8},new double[] {6.3, 2.7}, new double[] {6.7, 3.3},new double[] {7.2, 3.2},new double[] {6.2, 2.8}, new double[] {6.1, 3.0 },new double[] {6.4, 2.8},new double[] {7.2, 3.0 }, new double[] {7.4, 2.8},new double[] {7.9, 3.8},new double[] {6.4, 2.8}, new double[] {6.3, 2.8},new double[] {6.1, 2.6},new double[] {7.7, 3.0 }, new double[] {6.3, 3.4},new double[] {6.4, 3.1},new double[] {6.0, 3.0}, new double[] {6.9, 3.1},new double[] {6.7, 3.1},new double[] {6.9, 3.1}, new double[] {5.8, 2.7},new double[] {6.8, 3.2},new double[] {6.7, 3.3}, new double[] {6.7, 3.0 },new double[] {6.3, 2.5},new double[] {6.5, 3.0 }, new double[] {6.2, 3.4},new double[] {5.9, 3.0 }, new double[] {5.8, 3.0 }}); var y = np.array(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2); fit(X, y); // Create a regular grid and classify each point double x_min = (double) X.amin(0)[0] - 0.5; double y_min = (double) X.amin(0)[1] - 0.5; double x_max = (double) X.amax(0)[0] + 0.5; double y_max = (double) X.amax(0)[1] + 0.5; var (xx, yy) = np.meshgrid(np.linspace(x_min, x_max, 30), np.linspace(y_min, y_max, 30)); var s = tf.Session(); var samples = np.vstack(xx.ravel(), yy.ravel()); var Z = s.run(predict(samples)); return true; } public void fit(NDArray X, NDArray y) { NDArray unique_y = y.unique(); Dictionary>> dic = new Dictionary>>(); // Init uy in dic foreach (int uy in unique_y.Data()) { dic.Add(uy, new List>()); } // Separate training points by class // Shape : nb_classes * nb_samples * nb_features int maxCount = 0; for (int i = 0; i < y.size; i++) { long curClass = (long)y[i]; List> l = dic[curClass]; List pair = new List(); pair.Add((double)X[i,0]); pair.Add((double)X[i, 1]); l.Add(pair); if (l.Count > maxCount) { maxCount = l.Count; } dic[curClass] = l; } double[,,] points = new double[dic.Count, maxCount, X.shape[1]]; foreach (KeyValuePair>> kv in dic) { int j = (int) kv.Key; for (int i = 0; i < maxCount; i++) { for (int k = 0; k < X.shape[1]; k++) { points[j, i, k] = kv.Value[i][k]; } } } NDArray points_by_class = np.array(points); // estimate mean and variance for each class / feature // shape : nb_classes * nb_features var cons = tf.constant(points_by_class); var tup = tf.nn.moments(cons, new int[]{1}); var mean = tup.Item1; var variance = tup.Item2; // Create a 3x2 univariate normal distribution with the // Known mean and variance var dist = tf.distributions.Normal(mean, tf.sqrt(variance)); this.dist = dist; } public Tensor predict (NDArray X) { if (dist == null) { throw new ArgumentNullException("cant not find the model (normal distribution)!"); } int nb_classes = (int) dist.scale().shape[0]; int nb_features = (int)dist.scale().shape[1]; // Conditional probabilities log P(x|c) with shape // (nb_samples, nb_classes) var t1= ops.convert_to_tensor(X, TF_DataType.TF_DOUBLE); //var t2 = ops.convert_to_tensor(new int[] { 1, nb_classes }); //Tensor tile = tf.tile(t1, t2); Tensor tile = tf.tile(X, new int[] { 1, nb_classes }); Tensor r = tf.reshape(tile, new Tensor(new int[] { -1, nb_classes, nb_features })); var cond_probs = tf.reduce_sum(dist.log_prob(r)); // uniform priors var priors = np.log(np.array((1.0 / nb_classes) * nb_classes)); // posterior log probability, log P(c) + log P(x|c) var joint_likelihood = tf.add(new Tensor(priors), cond_probs); // normalize to get (log)-probabilities var norm_factor = tf.reduce_logsumexp(joint_likelihood, new int[] { 1 }, true); var log_prob = joint_likelihood - norm_factor; // exp to get the actual probabilities return tf.exp(log_prob); } public void PrepareData() { } } }