|
- '''
- A logistic regression learning algorithm example using TensorFlow library.
- This example is using the MNIST database of handwritten digits
- (http://yann.lecun.com/exdb/mnist/)
- Author: Aymeric Damien
- Project: https://github.com/aymericdamien/TensorFlow-Examples/
- '''
-
- from __future__ import print_function
-
- import tensorflow as tf
-
- # Import MNIST data
- from tensorflow.examples.tutorials.mnist import input_data
- mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
-
- # Parameters
- learning_rate = 0.01
- training_epochs = 10
- batch_size = 100
- display_step = 1
-
- # tf Graph Input
- x = tf.placeholder(tf.float32, [None, 784]) # mnist data image of shape 28*28=784
- y = tf.placeholder(tf.float32, [None, 10]) # 0-9 digits recognition => 10 classes
-
- # Set model weights
- W = tf.Variable(tf.zeros([784, 10]))
- b = tf.Variable(tf.zeros([10]))
-
- # Construct model
- pred = tf.nn.softmax(tf.matmul(x, W) + b) # Softmax
-
- # Minimize error using cross entropy
- cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(pred), reduction_indices=1))
- # Gradient Descent
- optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
-
- # Initialize the variables (i.e. assign their default value)
- init = tf.global_variables_initializer()
-
- # Start training
- with tf.Session() as sess:
-
- # Run the initializer
- sess.run(init)
-
- # Training cycle
- for epoch in range(training_epochs):
- avg_cost = 0.
- total_batch = int(mnist.train.num_examples/batch_size)
- # Loop over all batches
- for i in range(total_batch):
- batch_xs, batch_ys = mnist.train.next_batch(batch_size)
- # Run optimization op (backprop) and cost op (to get loss value)
- _, c = sess.run([optimizer, cost], feed_dict={x: batch_xs,
- y: batch_ys})
- # Compute average loss
- avg_cost += c / total_batch
- # Display logs per epoch step
- if (epoch+1) % display_step == 0:
- print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost))
-
- print("Optimization Finished!")
-
- # Test model
- correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
- # Calculate accuracy
- accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
- print("Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels}))
-
- # predict
- # results = sess.run(pred, feed_dict={x: batch_xs[:1]})
-
- # save model
- saver = tf.train.Saver()
- save_path = saver.save(sess, "logistic_regression/model.ckpt")
- tf.train.write_graph(sess.graph.as_graph_def(),'logistic_regression','model.pbtxt', as_text=True)
-
- freeze_graph.freeze_graph(input_graph = 'logistic_regression/model.pbtxt',
- input_saver = "",
- input_binary = False,
- input_checkpoint = 'logistic_regression/model.ckpt',
- output_node_names = "Softmax",
- restore_op_name = "save/restore_all",
- filename_tensor_name = "save/Const:0",
- output_graph = 'logistic_regression/model.pb',
- clear_devices = True,
- initializer_nodes = "")
-
- # restoring the model
- saver = tf.train.import_meta_graph('logistic_regression/tensorflowModel.ckpt.meta')
- saver.restore(sess,tf.train.latest_checkpoint('logistic_regression'))
-
- # predict
- # pred = graph._nodes_by_name["Softmax"]
- # output = pred.outputs[0]
- # x = graph._nodes_by_name["Placeholder"]
- # input = x.outputs[0]
- # results = sess.run(output, feed_dict={input: batch_xs[:1]})
|