''' A logistic regression learning algorithm example using TensorFlow library. This example is using the MNIST database of handwritten digits (http://yann.lecun.com/exdb/mnist/) Author: Aymeric Damien Project: https://github.com/aymericdamien/TensorFlow-Examples/ ''' from __future__ import print_function import tensorflow as tf # Import MNIST data from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("/tmp/data/", one_hot=True) # Parameters learning_rate = 0.01 training_epochs = 10 batch_size = 100 display_step = 1 # tf Graph Input x = tf.placeholder(tf.float32, [None, 784]) # mnist data image of shape 28*28=784 y = tf.placeholder(tf.float32, [None, 10]) # 0-9 digits recognition => 10 classes # Set model weights W = tf.Variable(tf.zeros([784, 10])) b = tf.Variable(tf.zeros([10])) # Construct model pred = tf.nn.softmax(tf.matmul(x, W) + b) # Softmax # Minimize error using cross entropy cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(pred), reduction_indices=1)) # Gradient Descent optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) # Initialize the variables (i.e. assign their default value) init = tf.global_variables_initializer() # Start training with tf.Session() as sess: # Run the initializer sess.run(init) # Training cycle for epoch in range(training_epochs): avg_cost = 0. total_batch = int(mnist.train.num_examples/batch_size) # Loop over all batches for i in range(total_batch): batch_xs, batch_ys = mnist.train.next_batch(batch_size) # Run optimization op (backprop) and cost op (to get loss value) _, c = sess.run([optimizer, cost], feed_dict={x: batch_xs, y: batch_ys}) # Compute average loss avg_cost += c / total_batch # Display logs per epoch step if (epoch+1) % display_step == 0: print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost)) print("Optimization Finished!") # Test model correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1)) # Calculate accuracy accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) print("Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels})) # predict # results = sess.run(pred, feed_dict={x: batch_xs[:1]}) # save model saver = tf.train.Saver() save_path = saver.save(sess, "logistic_regression/model.ckpt") tf.train.write_graph(sess.graph.as_graph_def(),'logistic_regression','model.pbtxt', as_text=True) freeze_graph.freeze_graph(input_graph = 'logistic_regression/model.pbtxt', input_saver = "", input_binary = False, input_checkpoint = 'logistic_regression/model.ckpt', output_node_names = "Softmax", restore_op_name = "save/restore_all", filename_tensor_name = "save/Const:0", output_graph = 'logistic_regression/model.pb', clear_devices = True, initializer_nodes = "") # restoring the model saver = tf.train.import_meta_graph('logistic_regression/tensorflowModel.ckpt.meta') saver.restore(sess,tf.train.latest_checkpoint('logistic_regression')) # predict # pred = graph._nodes_by_name["Softmax"] # output = pred.outputs[0] # x = graph._nodes_by_name["Placeholder"] # input = x.outputs[0] # results = sess.run(output, feed_dict={input: batch_xs[:1]})