|
- using System;
- using System.Collections.Generic;
- using System.Text;
- using Tensorflow;
- using NumSharp.Core;
- using System.Linq;
-
- namespace TensorFlowNET.Examples
- {
- /// <summary>
- /// https://github.com/nicolov/naive_bayes_tensorflow
- /// </summary>
- public class NaiveBayesClassifier : Python, IExample
- {
- public int Priority => 6;
- public bool Enabled => true;
- public string Name => "Naive Bayes Classifier";
-
- public Normal dist { get; set; }
- public bool Run()
- {
- var X = np.array<float>(new float[][] { new float[] { 5.1f, 3.5f},new float[] { 4.9f, 3.0f },new float[] { 4.7f, 3.2f },
- new float[] { 4.6f, 3.1f },new float[] { 5.0f, 3.6f },new float[] { 5.4f, 3.9f },
- new float[] { 4.6f, 3.4f },new float[] { 5.0f, 3.4f },new float[] { 4.4f, 2.9f },
- new float[] { 4.9f, 3.1f },new float[] { 5.4f, 3.7f },new float[] {4.8f, 3.4f },
- new float[] {4.8f, 3.0f },new float[] {4.3f, 3.0f },new float[] {5.8f, 4.0f },
- new float[] {5.7f, 4.4f },new float[] {5.4f, 3.9f },new float[] {5.1f, 3.5f },
- new float[] {5.7f, 3.8f },new float[] {5.1f, 3.8f },new float[] {5.4f, 3.4f },
- new float[] {5.1f, 3.7f },new float[] {5.1f, 3.3f },new float[] {4.8f, 3.4f },
- new float[] {5.0f, 3.0f },new float[] {5.0f , 3.4f },new float[] {5.2f, 3.5f },
- new float[] {5.2f, 3.4f },new float[] {4.7f, 3.2f },new float[] {4.8f, 3.1f },
- new float[] {5.4f, 3.4f },new float[] {5.2f, 4.1f},new float[] {5.5f, 4.2f },
- new float[] {4.9f, 3.1f },new float[] {5.0f , 3.2f },new float[] {5.5f, 3.5f },
- new float[] {4.9f, 3.6f },new float[] {4.4f, 3.0f },new float[] {5.1f, 3.4f },
- new float[] {5.0f , 3.5f },new float[] {4.5f, 2.3f },new float[] {4.4f, 3.2f },
- new float[] {5.0f , 3.5f },new float[] {5.1f, 3.8f },new float[] {4.8f, 3.0f},
- new float[] {5.1f, 3.8f },new float[] {4.6f, 3.2f },new float[] { 5.3f, 3.7f },
- new float[] {5.0f , 3.3f },new float[] {7.0f , 3.2f },new float[] {6.4f, 3.2f },
- new float[] {6.9f, 3.1f },new float[] {5.5f, 2.3f },new float[] {6.5f, 2.8f },
- new float[] {5.7f, 2.8f },new float[] {6.3f, 3.3f },new float[] {4.9f, 2.4f },
- new float[] {6.6f, 2.9f },new float[] {5.2f, 2.7f },new float[] {5.0f , 2.0f },
- new float[] {5.9f, 3.0f },new float[] {6.0f , 2.2f },new float[] {6.1f, 2.9f },
- new float[] {5.6f, 2.9f },new float[] {6.7f, 3.1f },new float[] {5.6f, 3.0f },
- new float[] {5.8f, 2.7f },new float[] {6.2f, 2.2f },new float[] {5.6f, 2.5f },
- new float[] {5.9f, 3.0f},new float[] {6.1f, 2.8f},new float[] {6.3f, 2.5f},
- new float[] {6.1f, 2.8f},new float[] {6.4f, 2.9f},new float[] {6.6f, 3.0f },
- new float[] {6.8f, 2.8f},new float[] {6.7f, 3.0f },new float[] {6.0f , 2.9f},
- new float[] {5.7f, 2.6f},new float[] {5.5f, 2.4f},new float[] {5.5f, 2.4f},
- new float[] {5.8f, 2.7f},new float[] {6.0f , 2.7f},new float[] {5.4f, 3.0f},
- new float[] {6.0f , 3.4f},new float[] {6.7f, 3.1f},new float[] {6.3f, 2.3f},
- new float[] {5.6f, 3.0f },new float[] {5.5f, 2.5f},new float[] {5.5f, 2.6f},
- new float[] {6.1f, 3.0f },new float[] {5.8f, 2.6f},new float[] {5.0f, 2.3f},
- new float[] {5.6f, 2.7f},new float[] {5.7f, 3.0f },new float[] {5.7f, 2.9f},
- new float[] {6.2f, 2.9f},new float[] {5.1f, 2.5f},new float[] {5.7f, 2.8f},
- new float[] {6.3f, 3.3f},new float[] {5.8f, 2.7f},new float[] {7.1f, 3.0f },
- new float[] {6.3f, 2.9f},new float[] {6.5f, 3.0f },new float[] {7.6f, 3.0f },
- new float[] {4.9f, 2.5f},new float[] {7.3f, 2.9f},new float[] {6.7f, 2.5f},
- new float[] {7.2f, 3.6f},new float[] {6.5f, 3.2f},new float[] {6.4f, 2.7f},
- new float[] {6.8f, 3.00f },new float[] {5.7f, 2.5f},new float[] {5.8f, 2.8f},
- new float[] {6.4f, 3.2f},new float[] {6.5f, 3.0f },new float[] {7.7f, 3.8f},
- new float[] {7.7f, 2.6f},new float[] {6.0f , 2.2f},new float[] {6.9f, 3.2f},
- new float[] {5.6f, 2.8f},new float[] {7.7f, 2.8f},new float[] {6.3f, 2.7f},
- new float[] {6.7f, 3.3f},new float[] {7.2f, 3.2f},new float[] {6.2f, 2.8f},
- new float[] {6.1f, 3.0f },new float[] {6.4f, 2.8f},new float[] {7.2f, 3.0f },
- new float[] {7.4f, 2.8f},new float[] {7.9f, 3.8f},new float[] {6.4f, 2.8f},
- new float[] {6.3f, 2.8f},new float[] {6.1f, 2.6f},new float[] {7.7f, 3.0f },
- new float[] {6.3f, 3.4f},new float[] {6.4f, 3.1f},new float[] {6.0f, 3.0f},
- new float[] {6.9f, 3.1f},new float[] {6.7f, 3.1f},new float[] {6.9f, 3.1f},
- new float[] {5.8f, 2.7f},new float[] {6.8f, 3.2f},new float[] {6.7f, 3.3f},
- new float[] {6.7f, 3.0f },new float[] {6.3f, 2.5f},new float[] {6.5f, 3.0f },
- new float[] {6.2f, 3.4f},new float[] {5.9f, 3.0f }, new float[] {5.8f, 3.0f }});
-
- var y = np.array<int>(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
- 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
- 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2);
- fit(X, y);
- // Create a regular grid and classify each point
- float x_min = X.amin(0).Data<float>(0) - 0.5f;
- float y_min = X.amin(0).Data<float>(1) - 0.5f;
- float x_max = X.amax(0).Data<float>(0) + 0.5f;
- float y_max = X.amax(0).Data<float>(1) + 0.5f;
-
- var (xx, yy) = np.meshgrid(np.linspace(x_min, x_max, 30), np.linspace(y_min, y_max, 30));
- var s = tf.Session();
- if (xx.dtype == typeof(float))
- {
- var samples = np.hstack<float>(xx.ravel().reshape(-1,1), yy.ravel().reshape(-1,1));
- var Z = s.run(predict(samples));
- }
-
-
- return true;
- }
-
- public void fit(NDArray X, NDArray y)
- {
- NDArray unique_y = y.unique<long>();
-
- Dictionary<long, List<List<float>>> dic = new Dictionary<long, List<List<float>>>();
- // Init uy in dic
- foreach (int uy in unique_y.Data<int>())
- {
- dic.Add(uy, new List<List<float>>());
- }
- // Separate training points by class
- // Shape : nb_classes * nb_samples * nb_features
- int maxCount = 0;
- for (int i = 0; i < y.size; i++)
- {
- long curClass = (long)y[i];
- List<List<float>> l = dic[curClass];
- List<float> pair = new List<float>();
- pair.Add((float)X[i,0]);
- pair.Add((float)X[i, 1]);
- l.Add(pair);
- if (l.Count > maxCount)
- {
- maxCount = l.Count;
- }
- dic[curClass] = l;
- }
- float[,,] points = new float[dic.Count, maxCount, X.shape[1]];
- foreach (KeyValuePair<long, List<List<float>>> kv in dic)
- {
- int j = (int) kv.Key;
- for (int i = 0; i < maxCount; i++)
- {
- for (int k = 0; k < X.shape[1]; k++)
- {
- points[j, i, k] = kv.Value[i][k];
- }
- }
-
- }
- NDArray points_by_class = np.array<float>(points);
- // estimate mean and variance for each class / feature
- // shape : nb_classes * nb_features
- var cons = tf.constant(points_by_class);
- var tup = tf.nn.moments(cons, new int[]{1});
- var mean = tup.Item1;
- var variance = tup.Item2;
-
- // Create a 3x2 univariate normal distribution with the
- // Known mean and variance
- var dist = tf.distributions.Normal(mean, tf.sqrt(variance));
- this.dist = dist;
- }
-
- public Tensor predict (NDArray X)
- {
- if (dist == null)
- {
- throw new ArgumentNullException("cant not find the model (normal distribution)!");
- }
- int nb_classes = (int) dist.scale().shape[0];
- int nb_features = (int)dist.scale().shape[1];
-
- // Conditional probabilities log P(x|c) with shape
- // (nb_samples, nb_classes)
- var t1= ops.convert_to_tensor(X, TF_DataType.TF_FLOAT);
- var t2 = ops.convert_to_tensor(new int[] { 1, nb_classes });
- Tensor tile = tf.tile(t1, t2);
- var t3 = ops.convert_to_tensor(new int[] { -1, nb_classes, nb_features });
- Tensor r = tf.reshape(tile, t3);
- var cond_probs = tf.reduce_sum(dist.log_prob(r), 2);
- // uniform priors
- float[] tem = new float[nb_classes];
- for (int i = 0; i < tem.Length; i++)
- {
- tem[i] = 1.0f / nb_classes;
- }
- var priors = np.log(np.array<float>(tem));
-
- // posterior log probability, log P(c) + log P(x|c)
- var joint_likelihood = tf.add(ops.convert_to_tensor(priors, TF_DataType.TF_FLOAT), cond_probs);
- // normalize to get (log)-probabilities
-
- var norm_factor = tf.reduce_logsumexp(joint_likelihood, new int[] { 1 }, keepdims: true);
- var log_prob = joint_likelihood - norm_factor;
- // exp to get the actual probabilities
- return tf.exp(log_prob);
- }
-
- public void PrepareData()
- {
-
- }
- }
- }
|