using System; using System.Collections.Generic; using System.Text; using Tensorflow; using NumSharp.Core; using System.Linq; namespace TensorFlowNET.Examples { /// /// https://github.com/nicolov/naive_bayes_tensorflow /// public class NaiveBayesClassifier : Python, IExample { public int Priority => 6; public bool Enabled => true; public string Name => "Naive Bayes Classifier"; public Normal dist { get; set; } public bool Run() { var X = np.array(new float[][] { new float[] { 5.1f, 3.5f},new float[] { 4.9f, 3.0f },new float[] { 4.7f, 3.2f }, new float[] { 4.6f, 3.1f },new float[] { 5.0f, 3.6f },new float[] { 5.4f, 3.9f }, new float[] { 4.6f, 3.4f },new float[] { 5.0f, 3.4f },new float[] { 4.4f, 2.9f }, new float[] { 4.9f, 3.1f },new float[] { 5.4f, 3.7f },new float[] {4.8f, 3.4f }, new float[] {4.8f, 3.0f },new float[] {4.3f, 3.0f },new float[] {5.8f, 4.0f }, new float[] {5.7f, 4.4f },new float[] {5.4f, 3.9f },new float[] {5.1f, 3.5f }, new float[] {5.7f, 3.8f },new float[] {5.1f, 3.8f },new float[] {5.4f, 3.4f }, new float[] {5.1f, 3.7f },new float[] {5.1f, 3.3f },new float[] {4.8f, 3.4f }, new float[] {5.0f, 3.0f },new float[] {5.0f , 3.4f },new float[] {5.2f, 3.5f }, new float[] {5.2f, 3.4f },new float[] {4.7f, 3.2f },new float[] {4.8f, 3.1f }, new float[] {5.4f, 3.4f },new float[] {5.2f, 4.1f},new float[] {5.5f, 4.2f }, new float[] {4.9f, 3.1f },new float[] {5.0f , 3.2f },new float[] {5.5f, 3.5f }, new float[] {4.9f, 3.6f },new float[] {4.4f, 3.0f },new float[] {5.1f, 3.4f }, new float[] {5.0f , 3.5f },new float[] {4.5f, 2.3f },new float[] {4.4f, 3.2f }, new float[] {5.0f , 3.5f },new float[] {5.1f, 3.8f },new float[] {4.8f, 3.0f}, new float[] {5.1f, 3.8f },new float[] {4.6f, 3.2f },new float[] { 5.3f, 3.7f }, new float[] {5.0f , 3.3f },new float[] {7.0f , 3.2f },new float[] {6.4f, 3.2f }, new float[] {6.9f, 3.1f },new float[] {5.5f, 2.3f },new float[] {6.5f, 2.8f }, new float[] {5.7f, 2.8f },new float[] {6.3f, 3.3f },new float[] {4.9f, 2.4f }, new float[] {6.6f, 2.9f },new float[] {5.2f, 2.7f },new float[] {5.0f , 2.0f }, new float[] {5.9f, 3.0f },new float[] {6.0f , 2.2f },new float[] {6.1f, 2.9f }, new float[] {5.6f, 2.9f },new float[] {6.7f, 3.1f },new float[] {5.6f, 3.0f }, new float[] {5.8f, 2.7f },new float[] {6.2f, 2.2f },new float[] {5.6f, 2.5f }, new float[] {5.9f, 3.0f},new float[] {6.1f, 2.8f},new float[] {6.3f, 2.5f}, new float[] {6.1f, 2.8f},new float[] {6.4f, 2.9f},new float[] {6.6f, 3.0f }, new float[] {6.8f, 2.8f},new float[] {6.7f, 3.0f },new float[] {6.0f , 2.9f}, new float[] {5.7f, 2.6f},new float[] {5.5f, 2.4f},new float[] {5.5f, 2.4f}, new float[] {5.8f, 2.7f},new float[] {6.0f , 2.7f},new float[] {5.4f, 3.0f}, new float[] {6.0f , 3.4f},new float[] {6.7f, 3.1f},new float[] {6.3f, 2.3f}, new float[] {5.6f, 3.0f },new float[] {5.5f, 2.5f},new float[] {5.5f, 2.6f}, new float[] {6.1f, 3.0f },new float[] {5.8f, 2.6f},new float[] {5.0f, 2.3f}, new float[] {5.6f, 2.7f},new float[] {5.7f, 3.0f },new float[] {5.7f, 2.9f}, new float[] {6.2f, 2.9f},new float[] {5.1f, 2.5f},new float[] {5.7f, 2.8f}, new float[] {6.3f, 3.3f},new float[] {5.8f, 2.7f},new float[] {7.1f, 3.0f }, new float[] {6.3f, 2.9f},new float[] {6.5f, 3.0f },new float[] {7.6f, 3.0f }, new float[] {4.9f, 2.5f},new float[] {7.3f, 2.9f},new float[] {6.7f, 2.5f}, new float[] {7.2f, 3.6f},new float[] {6.5f, 3.2f},new float[] {6.4f, 2.7f}, new float[] {6.8f, 3.00f },new float[] {5.7f, 2.5f},new float[] {5.8f, 2.8f}, new float[] {6.4f, 3.2f},new float[] {6.5f, 3.0f },new float[] {7.7f, 3.8f}, new float[] {7.7f, 2.6f},new float[] {6.0f , 2.2f},new float[] {6.9f, 3.2f}, new float[] {5.6f, 2.8f},new float[] {7.7f, 2.8f},new float[] {6.3f, 2.7f}, new float[] {6.7f, 3.3f},new float[] {7.2f, 3.2f},new float[] {6.2f, 2.8f}, new float[] {6.1f, 3.0f },new float[] {6.4f, 2.8f},new float[] {7.2f, 3.0f }, new float[] {7.4f, 2.8f},new float[] {7.9f, 3.8f},new float[] {6.4f, 2.8f}, new float[] {6.3f, 2.8f},new float[] {6.1f, 2.6f},new float[] {7.7f, 3.0f }, new float[] {6.3f, 3.4f},new float[] {6.4f, 3.1f},new float[] {6.0f, 3.0f}, new float[] {6.9f, 3.1f},new float[] {6.7f, 3.1f},new float[] {6.9f, 3.1f}, new float[] {5.8f, 2.7f},new float[] {6.8f, 3.2f},new float[] {6.7f, 3.3f}, new float[] {6.7f, 3.0f },new float[] {6.3f, 2.5f},new float[] {6.5f, 3.0f }, new float[] {6.2f, 3.4f},new float[] {5.9f, 3.0f }, new float[] {5.8f, 3.0f }}); var y = np.array(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2); fit(X, y); // Create a regular grid and classify each point float x_min = X.amin(0).Data(0) - 0.5f; float y_min = X.amin(0).Data(1) - 0.5f; float x_max = X.amax(0).Data(0) + 0.5f; float y_max = X.amax(0).Data(1) + 0.5f; var (xx, yy) = np.meshgrid(np.linspace(x_min, x_max, 30), np.linspace(y_min, y_max, 30)); var s = tf.Session(); if (xx.dtype == typeof(float)) { var samples = np.hstack(xx.ravel().reshape(-1,1), yy.ravel().reshape(-1,1)); var Z = s.run(predict(samples)); } return true; } public void fit(NDArray X, NDArray y) { NDArray unique_y = y.unique(); Dictionary>> dic = new Dictionary>>(); // Init uy in dic foreach (int uy in unique_y.Data()) { dic.Add(uy, new List>()); } // Separate training points by class // Shape : nb_classes * nb_samples * nb_features int maxCount = 0; for (int i = 0; i < y.size; i++) { long curClass = (long)y[i]; List> l = dic[curClass]; List pair = new List(); pair.Add((float)X[i,0]); pair.Add((float)X[i, 1]); l.Add(pair); if (l.Count > maxCount) { maxCount = l.Count; } dic[curClass] = l; } float[,,] points = new float[dic.Count, maxCount, X.shape[1]]; foreach (KeyValuePair>> kv in dic) { int j = (int) kv.Key; for (int i = 0; i < maxCount; i++) { for (int k = 0; k < X.shape[1]; k++) { points[j, i, k] = kv.Value[i][k]; } } } NDArray points_by_class = np.array(points); // estimate mean and variance for each class / feature // shape : nb_classes * nb_features var cons = tf.constant(points_by_class); var tup = tf.nn.moments(cons, new int[]{1}); var mean = tup.Item1; var variance = tup.Item2; // Create a 3x2 univariate normal distribution with the // Known mean and variance var dist = tf.distributions.Normal(mean, tf.sqrt(variance)); this.dist = dist; } public Tensor predict (NDArray X) { if (dist == null) { throw new ArgumentNullException("cant not find the model (normal distribution)!"); } int nb_classes = (int) dist.scale().shape[0]; int nb_features = (int)dist.scale().shape[1]; // Conditional probabilities log P(x|c) with shape // (nb_samples, nb_classes) var t1= ops.convert_to_tensor(X, TF_DataType.TF_FLOAT); var t2 = ops.convert_to_tensor(new int[] { 1, nb_classes }); Tensor tile = tf.tile(t1, t2); var t3 = ops.convert_to_tensor(new int[] { -1, nb_classes, nb_features }); Tensor r = tf.reshape(tile, t3); var cond_probs = tf.reduce_sum(dist.log_prob(r), 2); // uniform priors float[] tem = new float[nb_classes]; for (int i = 0; i < tem.Length; i++) { tem[i] = 1.0f / nb_classes; } var priors = np.log(np.array(tem)); // posterior log probability, log P(c) + log P(x|c) var joint_likelihood = tf.add(ops.convert_to_tensor(priors, TF_DataType.TF_FLOAT), cond_probs); // normalize to get (log)-probabilities var norm_factor = tf.reduce_logsumexp(joint_likelihood, new int[] { 1 }, keepdims: true); var log_prob = joint_likelihood - norm_factor; // exp to get the actual probabilities return tf.exp(log_prob); } public void PrepareData() { } } }