|
- using System;
- using System.Linq;
- using Microsoft.VisualStudio.TestTools.UnitTesting;
- using Tensorflow;
- using Tensorflow.Eager;
- using static Tensorflow.Python;
-
- namespace TensorFlowNET.UnitTest.ops_test
- {
- /// <summary>
- /// excerpt of tensorflow/python/framework/ops_test.py
- /// </summary>
- [TestClass]
- public class ControlDependenciesTest : PythonTest
- {
- [TestMethod]
- public void TestBasic()
- {
- var graph = tf.Graph().as_default();
- Tensor a = null, b = null, c = null, d = null, e = null;
- with<Graph>(graph, g =>
- {
- a = constant_op.constant(1.0);
- b = constant_op.constant(1.0);
- with(g.control_dependencies(new[] { a }), x =>
- {
- c = constant_op.constant(1.0);
- d = array_ops.identity(b);
- e = array_ops.identity(c);
- });
- });
- Assert.IsTrue(Enumerable.SequenceEqual(c.op.control_inputs, new[] { a.op }));
- Assert.IsTrue(Enumerable.SequenceEqual(d.op.control_inputs, new[] { a.op }));
- // e should be dominated by c.
- Assert.AreEqual(0, e.op.control_inputs.Length);
- }
-
- [Ignore("Future is not supported yet")]
- [TestMethod]
- public void TestEager()
- {
- Tensor a = null, c = null;
- object b = null;
- var calls = 0;
- Func<Tensor> future = () =>
- {
- calls += 1;
- return constant_op.constant(2.0);
- };
- using (var opts = new ContextOptions())
- using (var status = new Status())
- using (var context = new Context(opts, status))
- {
- if (context.executing_eagerly())
- {
- // TODO: make this compile (see original Python code below)
- a = constant_op.constant(1.0);
- b = future; // <--- {henon} obviously, this doesn't compile, looks like control_dependencies needs to be able to take callables as well.
- with(ops.control_dependencies(new object[] { a, b }), ctrl =>
- {
- return c = constant_op.constant(3.0);
- });
- Assert.AreEqual(calls, 1);
- }
- else
- {
- var graph = tf.Graph().as_default();
- with<Graph>(graph, g =>
- {
- a = constant_op.constant(1.0);
- var b1 = future();
- with(g.control_dependencies(new[] { a, b }), ctrl =>
- {
- c = constant_op.constant(3.0);
- });
- Assert.IsTrue(Enumerable.SequenceEqual(c.op.control_inputs, new[] { a.op, b1.op }));
- Assert.AreEqual(1, calls);
- });
-
- }
- }
- /*
- def testEager(self):
- def future():
- future.calls += 1
- return constant_op.constant(2.0)
- future.calls = 0
-
- if context.executing_eagerly():
- a = constant_op.constant(1.0)
- b = future
- with ops.control_dependencies([a, b]):
- c = constant_op.constant(3.0)
- self.assertEqual(future.calls, 1)
- else:
- g = ops.Graph()
- with g.as_default():
- a = constant_op.constant(1.0)
- b = future()
- with g.control_dependencies([a, b]):
- c = constant_op.constant(3.0)
- self.assertEqual(c.op.control_inputs, [a.op, b.op])
- self.assertEqual(future.calls, 1)
- */
- }
-
-
- [Ignore("How to port the ConvertibleObj?")]
- [TestMethod]
- public void TestBasicWithConversion()
- {
- var g = tf.Graph().as_default();
- // Note: _apply_op can be replaced by g.create_op
- var a = g.create_op("FloatOutput", new Tensor[] { }, new[] { TF_DataType.TF_FLOAT });
- // TODO: ConvertibleObj, see original source below
- /*
- def testBasicWithConversion(self):
- g = ops.Graph()
- a = _apply_op(g, "FloatOutput", [], [dtypes.float32])
-
- class ConvertibleObj(object):
-
- def _as_graph_element(self):
- return a
-
- with g.control_dependencies([ConvertibleObj()]):
- c = _apply_op(g, "FloatOutput", [], [dtypes.float32])
-
- self.assertEqual(c.op.control_inputs, [a.op])
- */
- }
-
- [TestMethod]
- public void TestNested()
- {
- var g = tf.Graph().as_default();
- var a_1 = constant_op.constant(1.0);
- var a_2 = constant_op.constant(3.0);
- var a_3 = constant_op.constant(4.0);
- var a_4 = constant_op.constant(5.0);
- Tensor b_1 = null, b_2 = null;
- with(g.control_dependencies(new[] { a_1, a_2, a_3, a_4 }), ctrl =>
- {
- b_1 = constant_op.constant(6.0);
- });
- with(g.control_dependencies(new[] { a_1 }), ctrl1 =>
- {
- with(g.control_dependencies(new[] { a_2 }), ctrl2 =>
- {
- with(g.control_dependencies(new[] { a_3 }), ctrl3 =>
- {
- with(g.control_dependencies(new[] { a_4 }), ctrl4 =>
- {
- b_2 = constant_op.constant(7.0);
- });
- });
- });
- });
- //var z=tf.add(a_1, tf.multiply(b_2, b_1));
- //with(g.control_dependencies(new[] {z}), ctrl =>
- //{
- // var z1 = tf.add(a_3, tf.multiply(a_4, a_2));
- //});
- //tf.train.export_meta_graph(@"D:\dev\tensorboard\logdir\sharp.meta", as_text: false);
- assertItemsEqual(b_1.op.control_inputs, new[] { a_1.op, a_2.op, a_3.op, a_4.op });
- assertItemsEqual(b_2.op.control_inputs, b_1.op.control_inputs);
- }
-
- [TestMethod]
- public void TestClear()
- {
- var g = tf.Graph().as_default();
- var a_1 = constant_op.constant(1.0);
- var a_2 = constant_op.constant(3.0);
- var a_3 = constant_op.constant(4.0);
- var a_4 = constant_op.constant(5.0);
- Operation b_3_4 = null, b_3 = null, b_none = null, b_1 = null, b_1_2 = null, b_none2 = null;
- with(g.control_dependencies(new[] { a_1 }), ctrl1 =>
- {
- with(g.control_dependencies(new[] { a_2 }), ctrl2 =>
- {
- with(g.control_dependencies(null), ctrl3 =>
- {
- with(g.control_dependencies(new[] { a_3 }), ctrl4 =>
- {
- with(g.control_dependencies(new[] { a_4 }), ctrl5 =>
- {
- // deps [a_3, a_4]
- b_3_4 = constant_op.constant(7.0);
- });
- // deps = [a_3]
- b_3 = constant_op.constant(8.0);
- });
- // deps back to None
- b_none = constant_op.constant(9.0);
- });
- // deps back to [a_1, a_2]
- b_1_2 = constant_op.constant(10.0);
- });
- // deps back to [a_1]
- b_1 = constant_op.constant(11.0);
- with(g.control_dependencies(null), ctrl6 =>
- {
- // deps are None again
- b_none2 = constant_op.constant(12.0);
- });
- });
- // Note assertItemsEqual(given, expected), expected and given parameters should be swapped below
- assertItemsEqual(new[] { a_3.op, a_4.op }, b_3_4.op.control_inputs);
- assertItemsEqual(new[] { a_3.op }, b_3.op.control_inputs);
- assertItemsEqual(new object[0], b_none.op.control_inputs);
- assertItemsEqual(new[] { a_1.op, a_2.op }, b_1_2.op.control_inputs);
- assertItemsEqual(new[] { a_1.op }, b_1.op.control_inputs);
- assertItemsEqual(new object[0], b_none2.op.control_inputs);
- }
-
- [TestMethod]
- public void TestComplex()
- {
- var g = tf.Graph().as_default();
- // Usage pattern:
- // * Nodes a_i are constants defined at the outermost scope, and are used
- // as control inputs for the ith nested scope.
- // * Nodes b_i are defined as Mul(a_3, a_4) at each scope.
- // * Nodes c_i are defined as Mul(a_1, b_1) at each scope.
- // * Nodes d_i are defined as Mul(b_i, c_i) at each scope.
- // * Nodes e_i are defined as Mul(e_i-1, e_i-1) at each scope i > 1.
- var a_1 = constant_op.constant(1.0);
- var a_2 = constant_op.constant(2.0);
- var a_3 = constant_op.constant(3.0);
- var a_4 = constant_op.constant(4.0);
- Operation b_1 = null, b_2 = null, b_3 = null, b_4 = null;
- Operation c_1 = null, c_2 = null, c_3 = null, c_4 = null;
- Operation d_1 = null, d_2 = null, d_3 = null, d_4 = null;
- Operation e_1 = null, e_2 = null, e_3 = null, e_4 = null;
- with(g.control_dependencies(new[] { a_1 }), ctrl1 =>
- {
- b_1 = tf.multiply(a_3, a_4);
- c_1 = tf.multiply(a_1, b_1.output);
- d_1 = tf.multiply(b_1.output, c_1.output);
- e_1 = constant_op.constant(5.0);
- with(g.control_dependencies(new[] { a_2 }), ctrl2 =>
- {
- b_2 = tf.multiply(a_3, a_4);
- c_2 = tf.multiply(a_1, b_1.output);
- d_2 = tf.multiply(b_2.output, c_2.output);
- e_2 = tf.multiply(e_1.output, e_1.output);
- with(g.control_dependencies(new[] { a_3 }), ctrl3 =>
- {
- b_3 = tf.multiply(a_3, a_4);
- c_3 = tf.multiply(a_1, b_1.output);
- d_3 = tf.multiply(b_3.output, c_3.output);
- e_3 = tf.multiply(e_2.output, e_2.output);
- with(g.control_dependencies(new[] { a_4 }), ctrl4 =>
- {
- b_4 = tf.multiply(a_3, a_4);
- c_4 = tf.multiply(a_1, b_1.output);
- d_4 = tf.multiply(b_4.output, c_4.output);
- e_4 = tf.multiply(e_3.output, e_3.output);
- });
- });
- });
- });
-
- // Note assertItemsEqual(given, expected), expected and given parameters should be swapped below
- assertItemsEqual(new[] {a_1.op}, b_1.op.control_inputs);
- assertItemsEqual(new[] {a_1.op, a_2.op}, b_2.op.control_inputs);
- assertItemsEqual(new[] { a_1.op, a_2.op}, b_3.op.control_inputs);
- assertItemsEqual(new[] {a_1.op, a_2.op}, b_4.op.control_inputs);
-
- assertItemsEqual(new object[0], c_1.op.control_inputs);
- assertItemsEqual(new[] {a_2.op}, c_2.op.control_inputs);
- assertItemsEqual(new[] {a_2.op, a_3.op}, c_3.op.control_inputs);
- assertItemsEqual(new[] {a_2.op, a_3.op, a_4.op}, c_4.op.control_inputs);
-
- assertItemsEqual(new object[0], d_1.op.control_inputs);
- assertItemsEqual(new object[0], d_2.op.control_inputs);
- assertItemsEqual(new object[0], d_3.op.control_inputs);
- assertItemsEqual(new object[0], d_4.op.control_inputs);
-
- assertItemsEqual(new[] {a_1.op}, e_1.op.control_inputs);
- assertItemsEqual(new[] {a_2.op}, e_2.op.control_inputs);
- assertItemsEqual(new[] {a_3.op}, e_3.op.control_inputs);
- assertItemsEqual(new[] {a_4.op}, e_4.op.control_inputs);
- }
-
- [Ignore("Don't know how to create an operation with two outputs")]
- [TestMethod]
- public void TestRepeatedDependency()
- {
- /*
- def testRepeatedDependency(self):
- g = ops.Graph()
- a = g.create_op("TwoFloatOutputs", [], [dtypes.float32, dtypes.float32])
- a_0, a_1 = a.outputs
- with g.control_dependencies([a_0]):
- b = _apply_op(g, "FloatOutput", [], [dtypes.float32])
- with g.control_dependencies([a_1]):
- c = _apply_op(g, "FloatOutput", [], [dtypes.float32])
-
- self.assertEqual(b.op.control_inputs, [a])
- self.assertEqual(c.op.control_inputs, [a])
-
- */
- }
-
- [TestMethod]
- public void TestNoControlDependencyWithDataDependency()
- {
- var g = tf.Graph().as_default();
- Operation b = null;
- var a = constant_op.constant(100.0);
- with(g.control_dependencies(new[] { a }), ctrl1 =>
- {
- b = array_ops.identity(a);
- });
- Assert.AreEqual(0, b.op.control_inputs.Length);
- }
-
- }
- }
|