using System; using System.Linq; using Microsoft.VisualStudio.TestTools.UnitTesting; using Tensorflow; using Tensorflow.Eager; using static Tensorflow.Python; namespace TensorFlowNET.UnitTest.ops_test { /// /// excerpt of tensorflow/python/framework/ops_test.py /// [TestClass] public class ControlDependenciesTest : PythonTest { [TestMethod] public void TestBasic() { var graph = tf.Graph().as_default(); Tensor a = null, b = null, c = null, d = null, e = null; with(graph, g => { a = constant_op.constant(1.0); b = constant_op.constant(1.0); with(g.control_dependencies(new[] { a }), x => { c = constant_op.constant(1.0); d = array_ops.identity(b); e = array_ops.identity(c); }); }); Assert.IsTrue(Enumerable.SequenceEqual(c.op.control_inputs, new[] { a.op })); Assert.IsTrue(Enumerable.SequenceEqual(d.op.control_inputs, new[] { a.op })); // e should be dominated by c. Assert.AreEqual(0, e.op.control_inputs.Length); } [Ignore("Future is not supported yet")] [TestMethod] public void TestEager() { Tensor a = null, c = null; object b = null; var calls = 0; Func future = () => { calls += 1; return constant_op.constant(2.0); }; using (var opts = new ContextOptions()) using (var status = new Status()) using (var context = new Context(opts, status)) { if (context.executing_eagerly()) { // TODO: make this compile (see original Python code below) a = constant_op.constant(1.0); b = future; // <--- {henon} obviously, this doesn't compile, looks like control_dependencies needs to be able to take callables as well. with(ops.control_dependencies(new object[] { a, b }), ctrl => { return c = constant_op.constant(3.0); }); Assert.AreEqual(calls, 1); } else { var graph = tf.Graph().as_default(); with(graph, g => { a = constant_op.constant(1.0); var b1 = future(); with(g.control_dependencies(new[] { a, b }), ctrl => { c = constant_op.constant(3.0); }); Assert.IsTrue(Enumerable.SequenceEqual(c.op.control_inputs, new[] { a.op, b1.op })); Assert.AreEqual(1, calls); }); } } /* def testEager(self): def future(): future.calls += 1 return constant_op.constant(2.0) future.calls = 0 if context.executing_eagerly(): a = constant_op.constant(1.0) b = future with ops.control_dependencies([a, b]): c = constant_op.constant(3.0) self.assertEqual(future.calls, 1) else: g = ops.Graph() with g.as_default(): a = constant_op.constant(1.0) b = future() with g.control_dependencies([a, b]): c = constant_op.constant(3.0) self.assertEqual(c.op.control_inputs, [a.op, b.op]) self.assertEqual(future.calls, 1) */ } [Ignore("How to port the ConvertibleObj?")] [TestMethod] public void TestBasicWithConversion() { var g = tf.Graph().as_default(); // Note: _apply_op can be replaced by g.create_op var a = g.create_op("FloatOutput", new Tensor[] { }, new[] { TF_DataType.TF_FLOAT }); // TODO: ConvertibleObj, see original source below /* def testBasicWithConversion(self): g = ops.Graph() a = _apply_op(g, "FloatOutput", [], [dtypes.float32]) class ConvertibleObj(object): def _as_graph_element(self): return a with g.control_dependencies([ConvertibleObj()]): c = _apply_op(g, "FloatOutput", [], [dtypes.float32]) self.assertEqual(c.op.control_inputs, [a.op]) */ } [TestMethod] public void TestNested() { var g = tf.Graph().as_default(); var a_1 = constant_op.constant(1.0); var a_2 = constant_op.constant(3.0); var a_3 = constant_op.constant(4.0); var a_4 = constant_op.constant(5.0); Tensor b_1 = null, b_2 = null; with(g.control_dependencies(new[] { a_1, a_2, a_3, a_4 }), ctrl => { b_1 = constant_op.constant(6.0); }); with(g.control_dependencies(new[] { a_1 }), ctrl1 => { with(g.control_dependencies(new[] { a_2 }), ctrl2 => { with(g.control_dependencies(new[] { a_3 }), ctrl3 => { with(g.control_dependencies(new[] { a_4 }), ctrl4 => { b_2 = constant_op.constant(7.0); }); }); }); }); //var z=tf.add(a_1, tf.multiply(b_2, b_1)); //with(g.control_dependencies(new[] {z}), ctrl => //{ // var z1 = tf.add(a_3, tf.multiply(a_4, a_2)); //}); //tf.train.export_meta_graph(@"D:\dev\tensorboard\logdir\sharp.meta", as_text: false); assertItemsEqual(b_1.op.control_inputs, new[] { a_1.op, a_2.op, a_3.op, a_4.op }); assertItemsEqual(b_2.op.control_inputs, b_1.op.control_inputs); } [TestMethod] public void TestClear() { var g = tf.Graph().as_default(); var a_1 = constant_op.constant(1.0); var a_2 = constant_op.constant(3.0); var a_3 = constant_op.constant(4.0); var a_4 = constant_op.constant(5.0); Operation b_3_4 = null, b_3 = null, b_none = null, b_1 = null, b_1_2 = null, b_none2 = null; with(g.control_dependencies(new[] { a_1 }), ctrl1 => { with(g.control_dependencies(new[] { a_2 }), ctrl2 => { with(g.control_dependencies(null), ctrl3 => { with(g.control_dependencies(new[] { a_3 }), ctrl4 => { with(g.control_dependencies(new[] { a_4 }), ctrl5 => { // deps [a_3, a_4] b_3_4 = constant_op.constant(7.0); }); // deps = [a_3] b_3 = constant_op.constant(8.0); }); // deps back to None b_none = constant_op.constant(9.0); }); // deps back to [a_1, a_2] b_1_2 = constant_op.constant(10.0); }); // deps back to [a_1] b_1 = constant_op.constant(11.0); with(g.control_dependencies(null), ctrl6 => { // deps are None again b_none2 = constant_op.constant(12.0); }); }); // Note assertItemsEqual(given, expected), expected and given parameters should be swapped below assertItemsEqual(new[] { a_3.op, a_4.op }, b_3_4.op.control_inputs); assertItemsEqual(new[] { a_3.op }, b_3.op.control_inputs); assertItemsEqual(new object[0], b_none.op.control_inputs); assertItemsEqual(new[] { a_1.op, a_2.op }, b_1_2.op.control_inputs); assertItemsEqual(new[] { a_1.op }, b_1.op.control_inputs); assertItemsEqual(new object[0], b_none2.op.control_inputs); } [TestMethod] public void TestComplex() { var g = tf.Graph().as_default(); // Usage pattern: // * Nodes a_i are constants defined at the outermost scope, and are used // as control inputs for the ith nested scope. // * Nodes b_i are defined as Mul(a_3, a_4) at each scope. // * Nodes c_i are defined as Mul(a_1, b_1) at each scope. // * Nodes d_i are defined as Mul(b_i, c_i) at each scope. // * Nodes e_i are defined as Mul(e_i-1, e_i-1) at each scope i > 1. var a_1 = constant_op.constant(1.0); var a_2 = constant_op.constant(2.0); var a_3 = constant_op.constant(3.0); var a_4 = constant_op.constant(4.0); Operation b_1 = null, b_2 = null, b_3 = null, b_4 = null; Operation c_1 = null, c_2 = null, c_3 = null, c_4 = null; Operation d_1 = null, d_2 = null, d_3 = null, d_4 = null; Operation e_1 = null, e_2 = null, e_3 = null, e_4 = null; with(g.control_dependencies(new[] { a_1 }), ctrl1 => { b_1 = tf.multiply(a_3, a_4); c_1 = tf.multiply(a_1, b_1.output); d_1 = tf.multiply(b_1.output, c_1.output); e_1 = constant_op.constant(5.0); with(g.control_dependencies(new[] { a_2 }), ctrl2 => { b_2 = tf.multiply(a_3, a_4); c_2 = tf.multiply(a_1, b_1.output); d_2 = tf.multiply(b_2.output, c_2.output); e_2 = tf.multiply(e_1.output, e_1.output); with(g.control_dependencies(new[] { a_3 }), ctrl3 => { b_3 = tf.multiply(a_3, a_4); c_3 = tf.multiply(a_1, b_1.output); d_3 = tf.multiply(b_3.output, c_3.output); e_3 = tf.multiply(e_2.output, e_2.output); with(g.control_dependencies(new[] { a_4 }), ctrl4 => { b_4 = tf.multiply(a_3, a_4); c_4 = tf.multiply(a_1, b_1.output); d_4 = tf.multiply(b_4.output, c_4.output); e_4 = tf.multiply(e_3.output, e_3.output); }); }); }); }); // Note assertItemsEqual(given, expected), expected and given parameters should be swapped below assertItemsEqual(new[] {a_1.op}, b_1.op.control_inputs); assertItemsEqual(new[] {a_1.op, a_2.op}, b_2.op.control_inputs); assertItemsEqual(new[] { a_1.op, a_2.op}, b_3.op.control_inputs); assertItemsEqual(new[] {a_1.op, a_2.op}, b_4.op.control_inputs); assertItemsEqual(new object[0], c_1.op.control_inputs); assertItemsEqual(new[] {a_2.op}, c_2.op.control_inputs); assertItemsEqual(new[] {a_2.op, a_3.op}, c_3.op.control_inputs); assertItemsEqual(new[] {a_2.op, a_3.op, a_4.op}, c_4.op.control_inputs); assertItemsEqual(new object[0], d_1.op.control_inputs); assertItemsEqual(new object[0], d_2.op.control_inputs); assertItemsEqual(new object[0], d_3.op.control_inputs); assertItemsEqual(new object[0], d_4.op.control_inputs); assertItemsEqual(new[] {a_1.op}, e_1.op.control_inputs); assertItemsEqual(new[] {a_2.op}, e_2.op.control_inputs); assertItemsEqual(new[] {a_3.op}, e_3.op.control_inputs); assertItemsEqual(new[] {a_4.op}, e_4.op.control_inputs); } [Ignore("Don't know how to create an operation with two outputs")] [TestMethod] public void TestRepeatedDependency() { /* def testRepeatedDependency(self): g = ops.Graph() a = g.create_op("TwoFloatOutputs", [], [dtypes.float32, dtypes.float32]) a_0, a_1 = a.outputs with g.control_dependencies([a_0]): b = _apply_op(g, "FloatOutput", [], [dtypes.float32]) with g.control_dependencies([a_1]): c = _apply_op(g, "FloatOutput", [], [dtypes.float32]) self.assertEqual(b.op.control_inputs, [a]) self.assertEqual(c.op.control_inputs, [a]) */ } [TestMethod] public void TestNoControlDependencyWithDataDependency() { var g = tf.Graph().as_default(); Operation b = null; var a = constant_op.constant(100.0); with(g.control_dependencies(new[] { a }), ctrl1 => { b = array_ops.identity(a); }); Assert.AreEqual(0, b.op.control_inputs.Length); } } }