using System;
using System.Linq;
using Microsoft.VisualStudio.TestTools.UnitTesting;
using Tensorflow;
using Tensorflow.Eager;
using static Tensorflow.Python;
namespace TensorFlowNET.UnitTest.ops_test
{
///
/// excerpt of tensorflow/python/framework/ops_test.py
///
[TestClass]
public class ControlDependenciesTest : PythonTest
{
[TestMethod]
public void TestBasic()
{
var graph = tf.Graph().as_default();
Tensor a = null, b = null, c = null, d = null, e = null;
with(graph, g =>
{
a = constant_op.constant(1.0);
b = constant_op.constant(1.0);
with(g.control_dependencies(new[] { a }), x =>
{
c = constant_op.constant(1.0);
d = array_ops.identity(b);
e = array_ops.identity(c);
});
});
Assert.IsTrue(Enumerable.SequenceEqual(c.op.control_inputs, new[] { a.op }));
Assert.IsTrue(Enumerable.SequenceEqual(d.op.control_inputs, new[] { a.op }));
// e should be dominated by c.
Assert.AreEqual(0, e.op.control_inputs.Length);
}
[Ignore("Future is not supported yet")]
[TestMethod]
public void TestEager()
{
Tensor a = null, c = null;
object b = null;
var calls = 0;
Func future = () =>
{
calls += 1;
return constant_op.constant(2.0);
};
using (var opts = new ContextOptions())
using (var status = new Status())
using (var context = new Context(opts, status))
{
if (context.executing_eagerly())
{
// TODO: make this compile (see original Python code below)
a = constant_op.constant(1.0);
b = future; // <--- {henon} obviously, this doesn't compile, looks like control_dependencies needs to be able to take callables as well.
with(ops.control_dependencies(new object[] { a, b }), ctrl =>
{
return c = constant_op.constant(3.0);
});
Assert.AreEqual(calls, 1);
}
else
{
var graph = tf.Graph().as_default();
with(graph, g =>
{
a = constant_op.constant(1.0);
var b1 = future();
with(g.control_dependencies(new[] { a, b }), ctrl =>
{
c = constant_op.constant(3.0);
});
Assert.IsTrue(Enumerable.SequenceEqual(c.op.control_inputs, new[] { a.op, b1.op }));
Assert.AreEqual(1, calls);
});
}
}
/*
def testEager(self):
def future():
future.calls += 1
return constant_op.constant(2.0)
future.calls = 0
if context.executing_eagerly():
a = constant_op.constant(1.0)
b = future
with ops.control_dependencies([a, b]):
c = constant_op.constant(3.0)
self.assertEqual(future.calls, 1)
else:
g = ops.Graph()
with g.as_default():
a = constant_op.constant(1.0)
b = future()
with g.control_dependencies([a, b]):
c = constant_op.constant(3.0)
self.assertEqual(c.op.control_inputs, [a.op, b.op])
self.assertEqual(future.calls, 1)
*/
}
[Ignore("How to port the ConvertibleObj?")]
[TestMethod]
public void TestBasicWithConversion()
{
var g = tf.Graph().as_default();
// Note: _apply_op can be replaced by g.create_op
var a = g.create_op("FloatOutput", new Tensor[] { }, new[] { TF_DataType.TF_FLOAT });
// TODO: ConvertibleObj, see original source below
/*
def testBasicWithConversion(self):
g = ops.Graph()
a = _apply_op(g, "FloatOutput", [], [dtypes.float32])
class ConvertibleObj(object):
def _as_graph_element(self):
return a
with g.control_dependencies([ConvertibleObj()]):
c = _apply_op(g, "FloatOutput", [], [dtypes.float32])
self.assertEqual(c.op.control_inputs, [a.op])
*/
}
[TestMethod]
public void TestNested()
{
var g = tf.Graph().as_default();
var a_1 = constant_op.constant(1.0);
var a_2 = constant_op.constant(3.0);
var a_3 = constant_op.constant(4.0);
var a_4 = constant_op.constant(5.0);
Tensor b_1 = null, b_2 = null;
with(g.control_dependencies(new[] { a_1, a_2, a_3, a_4 }), ctrl =>
{
b_1 = constant_op.constant(6.0);
});
with(g.control_dependencies(new[] { a_1 }), ctrl1 =>
{
with(g.control_dependencies(new[] { a_2 }), ctrl2 =>
{
with(g.control_dependencies(new[] { a_3 }), ctrl3 =>
{
with(g.control_dependencies(new[] { a_4 }), ctrl4 =>
{
b_2 = constant_op.constant(7.0);
});
});
});
});
//var z=tf.add(a_1, tf.multiply(b_2, b_1));
//with(g.control_dependencies(new[] {z}), ctrl =>
//{
// var z1 = tf.add(a_3, tf.multiply(a_4, a_2));
//});
//tf.train.export_meta_graph(@"D:\dev\tensorboard\logdir\sharp.meta", as_text: false);
assertItemsEqual(b_1.op.control_inputs, new[] { a_1.op, a_2.op, a_3.op, a_4.op });
assertItemsEqual(b_2.op.control_inputs, b_1.op.control_inputs);
}
[TestMethod]
public void TestClear()
{
var g = tf.Graph().as_default();
var a_1 = constant_op.constant(1.0);
var a_2 = constant_op.constant(3.0);
var a_3 = constant_op.constant(4.0);
var a_4 = constant_op.constant(5.0);
Operation b_3_4 = null, b_3 = null, b_none = null, b_1 = null, b_1_2 = null, b_none2 = null;
with(g.control_dependencies(new[] { a_1 }), ctrl1 =>
{
with(g.control_dependencies(new[] { a_2 }), ctrl2 =>
{
with(g.control_dependencies(null), ctrl3 =>
{
with(g.control_dependencies(new[] { a_3 }), ctrl4 =>
{
with(g.control_dependencies(new[] { a_4 }), ctrl5 =>
{
// deps [a_3, a_4]
b_3_4 = constant_op.constant(7.0);
});
// deps = [a_3]
b_3 = constant_op.constant(8.0);
});
// deps back to None
b_none = constant_op.constant(9.0);
});
// deps back to [a_1, a_2]
b_1_2 = constant_op.constant(10.0);
});
// deps back to [a_1]
b_1 = constant_op.constant(11.0);
with(g.control_dependencies(null), ctrl6 =>
{
// deps are None again
b_none2 = constant_op.constant(12.0);
});
});
// Note assertItemsEqual(given, expected), expected and given parameters should be swapped below
assertItemsEqual(new[] { a_3.op, a_4.op }, b_3_4.op.control_inputs);
assertItemsEqual(new[] { a_3.op }, b_3.op.control_inputs);
assertItemsEqual(new object[0], b_none.op.control_inputs);
assertItemsEqual(new[] { a_1.op, a_2.op }, b_1_2.op.control_inputs);
assertItemsEqual(new[] { a_1.op }, b_1.op.control_inputs);
assertItemsEqual(new object[0], b_none2.op.control_inputs);
}
[TestMethod]
public void TestComplex()
{
var g = tf.Graph().as_default();
// Usage pattern:
// * Nodes a_i are constants defined at the outermost scope, and are used
// as control inputs for the ith nested scope.
// * Nodes b_i are defined as Mul(a_3, a_4) at each scope.
// * Nodes c_i are defined as Mul(a_1, b_1) at each scope.
// * Nodes d_i are defined as Mul(b_i, c_i) at each scope.
// * Nodes e_i are defined as Mul(e_i-1, e_i-1) at each scope i > 1.
var a_1 = constant_op.constant(1.0);
var a_2 = constant_op.constant(2.0);
var a_3 = constant_op.constant(3.0);
var a_4 = constant_op.constant(4.0);
Operation b_1 = null, b_2 = null, b_3 = null, b_4 = null;
Operation c_1 = null, c_2 = null, c_3 = null, c_4 = null;
Operation d_1 = null, d_2 = null, d_3 = null, d_4 = null;
Operation e_1 = null, e_2 = null, e_3 = null, e_4 = null;
with(g.control_dependencies(new[] { a_1 }), ctrl1 =>
{
b_1 = tf.multiply(a_3, a_4);
c_1 = tf.multiply(a_1, b_1.output);
d_1 = tf.multiply(b_1.output, c_1.output);
e_1 = constant_op.constant(5.0);
with(g.control_dependencies(new[] { a_2 }), ctrl2 =>
{
b_2 = tf.multiply(a_3, a_4);
c_2 = tf.multiply(a_1, b_1.output);
d_2 = tf.multiply(b_2.output, c_2.output);
e_2 = tf.multiply(e_1.output, e_1.output);
with(g.control_dependencies(new[] { a_3 }), ctrl3 =>
{
b_3 = tf.multiply(a_3, a_4);
c_3 = tf.multiply(a_1, b_1.output);
d_3 = tf.multiply(b_3.output, c_3.output);
e_3 = tf.multiply(e_2.output, e_2.output);
with(g.control_dependencies(new[] { a_4 }), ctrl4 =>
{
b_4 = tf.multiply(a_3, a_4);
c_4 = tf.multiply(a_1, b_1.output);
d_4 = tf.multiply(b_4.output, c_4.output);
e_4 = tf.multiply(e_3.output, e_3.output);
});
});
});
});
// Note assertItemsEqual(given, expected), expected and given parameters should be swapped below
assertItemsEqual(new[] {a_1.op}, b_1.op.control_inputs);
assertItemsEqual(new[] {a_1.op, a_2.op}, b_2.op.control_inputs);
assertItemsEqual(new[] { a_1.op, a_2.op}, b_3.op.control_inputs);
assertItemsEqual(new[] {a_1.op, a_2.op}, b_4.op.control_inputs);
assertItemsEqual(new object[0], c_1.op.control_inputs);
assertItemsEqual(new[] {a_2.op}, c_2.op.control_inputs);
assertItemsEqual(new[] {a_2.op, a_3.op}, c_3.op.control_inputs);
assertItemsEqual(new[] {a_2.op, a_3.op, a_4.op}, c_4.op.control_inputs);
assertItemsEqual(new object[0], d_1.op.control_inputs);
assertItemsEqual(new object[0], d_2.op.control_inputs);
assertItemsEqual(new object[0], d_3.op.control_inputs);
assertItemsEqual(new object[0], d_4.op.control_inputs);
assertItemsEqual(new[] {a_1.op}, e_1.op.control_inputs);
assertItemsEqual(new[] {a_2.op}, e_2.op.control_inputs);
assertItemsEqual(new[] {a_3.op}, e_3.op.control_inputs);
assertItemsEqual(new[] {a_4.op}, e_4.op.control_inputs);
}
[Ignore("Don't know how to create an operation with two outputs")]
[TestMethod]
public void TestRepeatedDependency()
{
/*
def testRepeatedDependency(self):
g = ops.Graph()
a = g.create_op("TwoFloatOutputs", [], [dtypes.float32, dtypes.float32])
a_0, a_1 = a.outputs
with g.control_dependencies([a_0]):
b = _apply_op(g, "FloatOutput", [], [dtypes.float32])
with g.control_dependencies([a_1]):
c = _apply_op(g, "FloatOutput", [], [dtypes.float32])
self.assertEqual(b.op.control_inputs, [a])
self.assertEqual(c.op.control_inputs, [a])
*/
}
[TestMethod]
public void TestNoControlDependencyWithDataDependency()
{
var g = tf.Graph().as_default();
Operation b = null;
var a = constant_op.constant(100.0);
with(g.control_dependencies(new[] { a }), ctrl1 =>
{
b = array_ops.identity(a);
});
Assert.AreEqual(0, b.op.control_inputs.Length);
}
}
}