@@ -9,7 +9,7 @@ | |||
[](https://tensorflownet.readthedocs.io/en/latest/?badge=latest) | |||
[](https://996.icu/#/en_US) | |||
TF.NET is a member project of [SciSharp STACK](https://github.com/SciSharp). <a href="http://scisharpstack.org"><img src="https://github.com/SciSharp/SciSharp/blob/master/art/scisharp_badge.png" width="200" height="200" align="right" /></a> | |||
TF.NET is a member project of [SciSharp STACK](https://github.com/SciSharp). | |||
 | |||
@@ -30,6 +30,20 @@ namespace Tensorflow | |||
/// </summary> | |||
public static partial class Binding | |||
{ | |||
public static T2 get<T1, T2>(this Dictionary<T1, T2> dict, T1 key) | |||
=> key == null ? | |||
default(T2) : | |||
(dict.ContainsKey(key) ? dict[key] : default(T2)); | |||
public static void add<T>(this IList<T> list, T element) | |||
=> list.Add(element); | |||
public static void append<T>(this IList<T> list, T element) | |||
=> list.Add(element); | |||
public static void extend<T>(this List<T> list, IEnumerable<T> elements) | |||
=> list.AddRange(elements); | |||
private static string _tostring(object obj) | |||
{ | |||
switch (obj) | |||
@@ -81,6 +95,9 @@ namespace Tensorflow | |||
throw new NotImplementedException("len() not implemented for type: " + a.GetType()); | |||
} | |||
public static T[] list<T>(IEnumerable<T> list) | |||
=> list.ToArray(); | |||
public static IEnumerable<int> range(int end) | |||
{ | |||
return Enumerable.Range(0, end); | |||
@@ -109,11 +109,12 @@ namespace Tensorflow.Operations.ControlFlows | |||
grad_state.grad_context.Enter(); | |||
} | |||
// def ExitGradWhileContext(self, op, before): | |||
// """Exit the WhileContext for gradient computation.""" | |||
// grad_state = self.GetGradState(op, before) | |||
// if grad_state: | |||
// grad_state.grad_context.Exit() | |||
public void ExitGradWhileContext(Operation op, bool before) | |||
{ | |||
var grad_state = GetGradState(op, before); | |||
if (grad_state != null) | |||
grad_state.grad_context.Exit(); | |||
} | |||
// def AddWhileContext(self, op, between_op_list, between_ops): | |||
// """Add the grad state for the while loop that op belongs to. | |||
@@ -287,51 +288,9 @@ namespace Tensorflow.Operations.ControlFlows | |||
return result; | |||
} | |||
// def PostProcessing(self): | |||
// """Perform postprocessing at the end of gradients(). | |||
// We have created the gradient graph at this point. So this function | |||
// can be used to perform any postprocessing on the gradient graph. | |||
// We currently perform the following postprocessing: | |||
// 1. Patch the gradient graph if the output of a loop variable | |||
// doesn't depend on its input. | |||
// """ | |||
// for _, grad_state in self._map.items(): | |||
// for _, b_merge in grad_state.switch_map.items(): | |||
// if b_merge.op.inputs[0] == b_merge.op.inputs[1]: | |||
// # The value of this loop variable at iteration i+1 doesn't | |||
// # depend on its value at iteration i. So use zeros as the | |||
// # gradients for all iterations > 0. | |||
// dtype = b_merge.op.inputs[0].dtype | |||
// shape = b_merge.op.inputs[0].get_shape() | |||
// # pylint: disable=protected-access | |||
// if shape.is_fully_defined(): | |||
// grad_state.grad_context.Enter() | |||
// # Create a zeros and use it for iterations > 0. | |||
// grad_val = constant_op.constant(0, dtype=dtype, shape=shape) | |||
// next_grad_val = _NextIteration(grad_val) | |||
// grad_state.grad_context.Exit() | |||
// else: | |||
// # Create a zeros in the outer grad context. | |||
// outer_grad_ctxt = grad_state.grad_context.outer_context | |||
// if outer_grad_ctxt: | |||
// outer_grad_ctxt.Enter() | |||
// enter_grad_op = b_merge.op.inputs[0].op | |||
// enter_grad = enter_grad_op.inputs[0] | |||
// grad_shape = array_ops.shape_internal(enter_grad, optimize=False) | |||
// grad_val = array_ops.zeros(grad_shape) | |||
// if outer_grad_ctxt: | |||
// outer_grad_ctxt.Exit() | |||
// # Use the zeros for iterations > 0. | |||
// grad_state.grad_context.Enter() | |||
// next_grad_val = _NextIteration(grad_val) | |||
// grad_state.grad_context.Exit() | |||
// b_merge.op._update_input(1, next_grad_val) | |||
// # pylint: enable=protected-access | |||
public void PostProcessing() | |||
{ | |||
throw new NotImplementedException("PostProcessing"); | |||
} | |||
} | |||
} |
@@ -17,7 +17,9 @@ | |||
using System; | |||
using System.Collections; | |||
using System.Collections.Generic; | |||
using System.Linq; | |||
using static Tensorflow.Binding; | |||
using util = Tensorflow.control_flow_util; | |||
namespace Tensorflow.Operations.ControlFlows | |||
{ | |||
@@ -56,6 +58,7 @@ namespace Tensorflow.Operations.ControlFlows | |||
public GradLoopState outer_grad_state => _outer_grad_state; | |||
Tensor _forward_index; | |||
public Tensor forward_index => _forward_index; | |||
Tensor _grad_index; | |||
Tensor[] _forward_loop_exits; | |||
@@ -152,63 +155,52 @@ namespace Tensorflow.Operations.ControlFlows | |||
/// <returns>The stack that contains the accumulated history of the tensor.</returns> | |||
public Tensor AddForwardAccumulator(Tensor value, bool dead_branch = false) | |||
{ | |||
throw new NotImplementedException("AddForwardAccumulator"); | |||
// # curr_ctxt is the context that tf.gradients was called in. | |||
// with self._forward_index.graph.as_default(): | |||
// curr_ctxt = ops.get_default_graph()._get_control_flow_context() # pylint: disable=protected-access | |||
// with ops.control_dependencies(None): | |||
// if curr_ctxt: | |||
// curr_ctxt.Enter() | |||
// with ops.colocate_with(value): | |||
// # We only need to pass maximum_iterations to the stack if | |||
// # we're inside an XLA context. | |||
// if not util.IsInXLAContext(value.op): | |||
// max_size = constant_op.constant(-1, dtypes.int32) | |||
// else: | |||
// max_size = GetMaxSizeFromNestedMaximumIterations( | |||
// value, self.forward_context) | |||
// acc = gen_data_flow_ops.stack_v2( | |||
// max_size=max_size, elem_type=value.dtype.base_dtype, name="f_acc") | |||
// if curr_ctxt: | |||
// curr_ctxt.Exit() | |||
// # Make acc available in the forward context. | |||
// enter_acc = self.forward_context.AddValue(acc) | |||
// # Add the stack_push op in the context of value.op. | |||
// swap_enabled = self.forward_context.swap_memory | |||
// value_ctxt = util.GetOutputContext(value.op) | |||
// if value_ctxt == self.forward_context: | |||
// # value is not nested in the forward context. | |||
// self.forward_context.Enter() | |||
// push = gen_data_flow_ops.stack_push_v2( | |||
// enter_acc, value, swap_memory=swap_enabled) | |||
// self.forward_context.Exit() | |||
// # Protect stack push and order it before forward_index. | |||
// self.forward_index.op._add_control_input(push.op) | |||
// else: | |||
// # value is in a cond context within the forward context. | |||
// if not isinstance(value_ctxt, CondContext): | |||
// raise TypeError("value_ctxt is not a CondContext: %s" % value_ctxt) | |||
// if dead_branch: | |||
// # The special case for creating a zero tensor for a dead | |||
// # branch of a switch. See ControlFlowState.ZerosLike(). | |||
// value_ctxt.outer_context.Enter() | |||
// push = gen_data_flow_ops.stack_push_v2( | |||
// enter_acc, value, swap_memory=swap_enabled) | |||
// value_ctxt.outer_context.Exit() | |||
// push.op._set_control_flow_context(value_ctxt) | |||
// else: | |||
// value_ctxt.Enter() | |||
// push = gen_data_flow_ops.stack_push_v2( | |||
// enter_acc, value, swap_memory=swap_enabled) | |||
// value_ctxt.Exit() | |||
// # Protect stack push and order it before forward_sync. | |||
// self.forward_sync._add_control_input(push.op) | |||
// # Order stack push after the successor of forward_index | |||
// add_op = self.forward_index.op.inputs[0].op | |||
// push.op._add_control_input(add_op) | |||
// return acc | |||
using (_forward_index.graph.as_default()) | |||
{ | |||
var curr_ctxt = ops.get_default_graph()._get_control_flow_context(); | |||
return tf_with(ops.control_dependencies(null), delegate | |||
{ | |||
Tensor acc = null; | |||
Tensor push = null; | |||
if (curr_ctxt != null) | |||
curr_ctxt.Enter(); | |||
ops.colocate_with(value); | |||
{ | |||
// We only need to pass maximum_iterations to the stack if | |||
// we're inside an XLA context. | |||
var max_size = constant_op.constant(-1, dtypes.int32); | |||
acc = gen_data_flow_ops.stack_v2( | |||
max_size: max_size, elem_type: value.dtype.as_base_dtype(), name: "f_acc"); | |||
} | |||
if (curr_ctxt != null) | |||
curr_ctxt.Exit(); | |||
// Make acc available in the forward context. | |||
var enter_acc = forward_context.AddValue(acc); | |||
// Add the stack_push op in the context of value.op. | |||
var swap_enabled = forward_context.swap_memory; | |||
var value_ctxt = util.GetOutputContext(value.op); | |||
if(value_ctxt == forward_context) | |||
{ | |||
// value is not nested in the forward context. | |||
forward_context.Enter(); | |||
push = gen_data_flow_ops.stack_push_v2(enter_acc, value, swap_memory: swap_enabled); | |||
forward_context.Exit(); | |||
// Protect stack push and order it before forward_index. | |||
forward_index.op._add_control_input(push.op); | |||
} | |||
else | |||
{ | |||
throw new NotImplementedException("AddForwardAccumulator"); | |||
} | |||
// Order stack push after the successor of forward_index | |||
var add_op = forward_index.op.inputs[0].op; | |||
push.op._add_control_input(add_op); | |||
return acc; | |||
}); | |||
} | |||
} | |||
// """Add the getter for an accumulated value in the grad context. | |||
@@ -225,6 +217,7 @@ namespace Tensorflow.Operations.ControlFlows | |||
// Returns: | |||
// The current value (the top of the stack). | |||
// """ | |||
public Tensor AddBackpropAccumulatedValue(Tensor history_value, Tensor value, bool dead_branch= false) | |||
{ | |||
throw new NotImplementedException(); | |||
@@ -261,62 +254,50 @@ namespace Tensorflow.Operations.ControlFlows | |||
// return pop | |||
} | |||
// def GetRealValue(self, value): | |||
// """Get the real value of `value`. | |||
// If backprop "uses" a value produced by forward inference, an accumulator | |||
// is added in the forward loop to accumulate its values. We use the | |||
// accumulated value. This method must be called in the grad loop context. | |||
// `value` must be in forward and needed for backprop. | |||
// Args: | |||
// value: A tensor to be captured. | |||
// Returns: | |||
// The same tensor obtained from the saved history. | |||
// """ | |||
// assert value.op.type not in ["Variable", "VariableV2"] | |||
// real_value = self._history_map.get(value.name) | |||
// if real_value is None: | |||
// cur_value = value | |||
// cur_grad_state = self | |||
// while True: | |||
// enter_op = util.GetLoopConstantEnter(cur_value) | |||
// if enter_op: | |||
// # Special case: cur_value comes from a constant Enter node. | |||
// cur_value = enter_op.inputs[0] | |||
// cur_grad_state = cur_grad_state.outer_grad_state | |||
// if cur_grad_state is None: | |||
// # We are now outside all nested loops for this gradient(), | |||
// # so `value` is a loop invariant and there is no need to | |||
// # save the history of value. Just make cur_value to enter | |||
// # the right control flow context. | |||
// real_value = self._grad_context.AddValue(cur_value) | |||
// break | |||
// elif constant_op.is_constant(cur_value): | |||
// # If the value to be forwarded is a constant, clone the constant in | |||
// # the gradient loop rather than using a stack. | |||
// # TODO(phawkins): consider hoisting the constant out of the loop | |||
// # instead. | |||
// real_value = constant_op.constant( | |||
// tensor_util.constant_value(cur_value), dtype=cur_value.dtype) | |||
// break | |||
// else: | |||
// # Record the history of this value in forward_ctxt. | |||
// self._grad_context.Exit() | |||
// history_value = cur_grad_state.AddForwardAccumulator(cur_value) | |||
// self._grad_context.Enter() | |||
// break | |||
// if real_value is None: | |||
// # Add the stack pop op in the grad context. | |||
// real_value = cur_grad_state.AddBackpropAccumulatedValue( | |||
// history_value, cur_value) | |||
// if cur_grad_state != self: | |||
// real_value = self._grad_context.AddValue(real_value) | |||
// self._history_map[value.name] = real_value | |||
// return real_value | |||
/// <summary> | |||
/// Get the real value of `value`. | |||
/// </summary> | |||
/// <param name="value">A tensor to be captured.</param> | |||
/// <returns>The same tensor obtained from the saved history.</returns> | |||
public Tensor GetRealValue(Tensor value) | |||
{ | |||
Tensor real_value = null; | |||
if(real_value == null) | |||
{ | |||
var cur_value = value; | |||
var cur_grad_state = this; | |||
Tensor history_value = null; | |||
while (true) | |||
{ | |||
var enter_op = util.GetLoopConstantEnter(cur_value); | |||
if(enter_op != null) | |||
{ | |||
throw new NotImplementedException("GetRealValue"); | |||
} | |||
else if (constant_op.is_constant(cur_value)) | |||
{ | |||
throw new NotImplementedException("GetRealValue"); | |||
} | |||
else | |||
{ | |||
// Record the history of this value in forward_ctxt. | |||
_grad_context.Exit(); | |||
history_value = cur_grad_state.AddForwardAccumulator(cur_value); | |||
_grad_context.Enter(); | |||
break; | |||
} | |||
} | |||
if(real_value == null) | |||
{ | |||
// Add the stack pop op in the grad context. | |||
real_value = cur_grad_state.AddBackpropAccumulatedValue(history_value, cur_value); | |||
if (cur_grad_state != this) | |||
real_value = _grad_context.AddValue(real_value); | |||
} | |||
_history_map[value.name] = real_value; | |||
} | |||
return real_value; | |||
} | |||
} | |||
} |
@@ -530,10 +530,9 @@ namespace Tensorflow.Operations | |||
} | |||
if(forward_ctxt == grad_ctxt.grad_state.forward_context) | |||
{ | |||
throw new NotImplementedException("forward_ctxt == grad_ctxt.grad_state.forward_context"); | |||
/*real_val = grad_ctxt.grad_state.GetRealValue(val); | |||
var real_val = grad_ctxt.grad_state.GetRealValue(val); | |||
_external_values[val.name] = real_val; | |||
return real_val;*/ | |||
return real_val; | |||
} | |||
} | |||
} | |||
@@ -30,7 +30,7 @@ namespace Tensorflow.Operations | |||
TF_DataType dtype = TF_DataType.DtInvalid, | |||
int? parallel_iterations = null, bool swap_memory = false, bool time_major = false) | |||
{ | |||
tf_with(tf.variable_scope("rnn"), scope => | |||
return tf_with(tf.variable_scope("rnn"), scope => | |||
{ | |||
VariableScope varscope = scope; | |||
var flat_input = nest.flatten(inputs_tensor); | |||
@@ -64,9 +64,12 @@ namespace Tensorflow.Operations | |||
swap_memory: swap_memory, | |||
sequence_length: sequence_length, | |||
dtype: dtype); | |||
}); | |||
throw new NotImplementedException(""); | |||
if (!time_major) | |||
outputs = nest.map_structure(_transpose_batch_time, outputs); | |||
return (outputs, final_state); | |||
}); | |||
} | |||
/// <summary> | |||
@@ -210,16 +213,28 @@ namespace Tensorflow.Operations | |||
var input_t_t = nest.pack_sequence_as2(structure: inputs, flat_sequence: input_t); | |||
// Keras RNN cells only accept state as list, even if it's a single tensor. | |||
// var is_keras_rnn_cell = _is_keras_rnn_cell(cell); | |||
(Tensor, Tensor) a = (null, null); | |||
Tensor[] outputs = null; | |||
if (sequence_length != null) | |||
throw new NotImplementedException("sequence_length != null"); | |||
else | |||
a = cell.__call__(input_t_t, state: state1); | |||
outputs = cell.__call__(input_t_t, state: state1); | |||
var (output, new_state) = (outputs[0], outputs[1]); | |||
// Keras cells always wrap state as list, even if it's a single tensor. | |||
// if(is_keras_rnn_cell && len(new_state)) == 1 | |||
// Pack state if using state tuples | |||
outputs = nest.flatten2(output).Select(x => x as Tensor).ToArray(); | |||
return item; | |||
output_ta_t = zip(output_ta_t, outputs).Select(x => | |||
{ | |||
var(ta, @out) = (x.Item1, x.Item2); | |||
return ta.write(item.time, @out); | |||
}).ToArray(); | |||
return new BodyItemInRnnWhileLoop(item.time + 1, output_ta_t, new_state); | |||
}; | |||
control_flow_ops.while_loop( | |||
var while_loop_result = control_flow_ops.while_loop( | |||
cond: cond, | |||
body: _time_step, | |||
loop_vars: new BodyItemInRnnWhileLoop(time, output_ta.ToArray(), state), | |||
@@ -227,7 +242,18 @@ namespace Tensorflow.Operations | |||
maximum_iterations: time_steps, | |||
swap_memory: swap_memory); | |||
throw new NotImplementedException(""); | |||
(_, TensorArray[] output_final_ta, Tensor final_state) = (while_loop_result.time, while_loop_result.output_ta_t, while_loop_result.state); | |||
// Unpack final output if not using output tuples. | |||
var final_outputs = output_final_ta.Select(ta => ta.stack()).ToArray(); | |||
// Restore some shape information | |||
foreach (var (output, output_size) in zip(final_outputs, flat_output_size)) | |||
{ | |||
var shape = rnn_cell_impl._concat(new[] { const_time_steps, const_batch_size }, output_size, @static: true); | |||
output.set_shape(shape); | |||
} | |||
return (final_outputs[0], final_state); | |||
} | |||
private static TensorShape _maybe_tensor_shape_from_tensor(Tensor shape) | |||
@@ -53,5 +53,34 @@ namespace Tensorflow.Operations | |||
return array_ops.concat(new[] { p, s }, 0); | |||
} | |||
} | |||
public static TensorShape _concat(int[] prefix, int suffix, bool @static = false) | |||
{ | |||
var p = new TensorShape(prefix); | |||
var p_static = prefix; | |||
var p_tensor = p.is_fully_defined() ? constant_op.constant(p.as_list(), dtype: dtypes.int32) : null; | |||
var s_tensor_shape = new TensorShape(suffix); | |||
var s_static = s_tensor_shape.ndim > -1 ? | |||
s_tensor_shape.dims : | |||
null; | |||
var s_tensor = s_tensor_shape.is_fully_defined() ? | |||
constant_op.constant(s_tensor_shape.dims, dtype: dtypes.int32) : | |||
null; | |||
if (@static) | |||
{ | |||
if (p_static is null) return null; | |||
var shape = new TensorShape(p_static).concatenate(s_static); | |||
return shape; | |||
} | |||
else | |||
{ | |||
if (p is null || s_tensor is null) | |||
throw new ValueError($"Provided a prefix or suffix of None: {prefix} and {suffix}"); | |||
// return array_ops.concat(new[] { p_tensor, s_tensor }, 0); | |||
throw new NotImplementedException(""); | |||
} | |||
} | |||
} | |||
} |
@@ -52,6 +52,10 @@ namespace Tensorflow | |||
public void _set_control_flow_context(ControlFlowContext ctx) | |||
{ | |||
if (name.Contains("gradients/rnn/while/basic_rnn_cell/Tanh_grad/TanhGrad/f_acc")) | |||
{ | |||
} | |||
_control_flow_context = ctx; | |||
} | |||
@@ -59,5 +63,10 @@ namespace Tensorflow | |||
{ | |||
return _control_flow_context; | |||
} | |||
public WhileContext GetWhileContext() | |||
{ | |||
return _control_flow_context as WhileContext; | |||
} | |||
} | |||
} |
@@ -15,17 +15,14 @@ | |||
******************************************************************************/ | |||
using System; | |||
using System.Linq; | |||
using System.Collections.Generic; | |||
using static Tensorflow.Binding; | |||
namespace Tensorflow | |||
{ | |||
public partial class Operation | |||
{ | |||
// cache the mapping between managed and unmanaged op | |||
// some data is stored in managed instance, so when | |||
// create Operation by IntPtr, it will lost some data. | |||
private static Dictionary<IntPtr, Operation> OpInstances = new Dictionary<IntPtr, Operation>(); | |||
/// <summary> | |||
/// Get operation by handle | |||
/// </summary> | |||
@@ -33,9 +30,17 @@ namespace Tensorflow | |||
/// <returns></returns> | |||
public Operation GetOperation(IntPtr handle) | |||
{ | |||
return OpInstances.ContainsKey(handle) ? | |||
OpInstances[handle] : | |||
new Operation(handle); | |||
var nodes = tf.get_default_graph()._nodes_by_name; | |||
foreach(var node in nodes.Values) | |||
{ | |||
if (node is Operation op) | |||
{ | |||
if (op == handle) | |||
return op; | |||
} | |||
} | |||
return null; | |||
} | |||
} | |||
} |
@@ -106,7 +106,6 @@ namespace Tensorflow | |||
_control_flow_context = _graph._get_control_flow_context(); | |||
// Note: _control_flow_post_processing() must not be called here, the caller is responsible for calling it when using this constructor. | |||
OpInstances[_handle] = this; | |||
} | |||
/*public Operation(Graph g, string opType, string oper_name) | |||
@@ -183,10 +182,12 @@ namespace Tensorflow | |||
// This will be set by self.inputs. | |||
if (op_def == null) | |||
op_def = g.GetOpDef(node_def.Op); | |||
if(node_def.Name == "gradients/rnn/while/basic_rnn_cell/Tanh_grad/TanhGrad/f_acc") | |||
{ | |||
} | |||
var grouped_inputs = _reconstruct_sequence_inputs(op_def, inputs, node_def.Attr); | |||
_handle = ops._create_c_op(g, node_def, grouped_inputs, control_input_ops.ToArray()); | |||
_is_stateful = op_def.IsStateful; | |||
// Initialize self._outputs. | |||
@@ -202,8 +203,6 @@ namespace Tensorflow | |||
if (_handle != IntPtr.Zero) | |||
_control_flow_post_processing(); | |||
OpInstances[_handle] = this; | |||
} | |||
public void run(FeedItem[] feed_dict = null, Session session = null) | |||
@@ -183,7 +183,7 @@ namespace Tensorflow | |||
{ | |||
var _op = _op_def_lib._apply_op_helper("Identity", name, new { input }); | |||
return _op.outputs[0]; | |||
return _op.output; | |||
} | |||
public static Tensor invert_permutation(Tensor x, string name = null) | |||
@@ -14,6 +14,8 @@ | |||
limitations under the License. | |||
******************************************************************************/ | |||
using Tensorflow.Operations; | |||
namespace Tensorflow | |||
{ | |||
public class gen_control_flow_ops | |||
@@ -148,18 +150,18 @@ namespace Tensorflow | |||
return new []{_op.outputs[0], _op.outputs[1]}; | |||
} | |||
public static Tensor[] ref_merge(Tensor[] inputs, string name = null) | |||
public static MergeOutput ref_merge(Tensor[] inputs, string name = null) | |||
{ | |||
var _op = _op_def_lib._apply_op_helper("RefMerge", name, new { inputs }); | |||
return _op.outputs; | |||
return new MergeOutput(_op.outputs); | |||
} | |||
public static Tensor[] merge(Tensor[] inputs, string name = null) | |||
public static MergeOutput merge(Tensor[] inputs, string name = null) | |||
{ | |||
var _op = _op_def_lib._apply_op_helper("Merge", name, new { inputs }); | |||
return _op.outputs; | |||
return new MergeOutput(_op.outputs); | |||
} | |||
} | |||
} |
@@ -259,5 +259,31 @@ namespace Tensorflow | |||
return _op.output; | |||
} | |||
public static Tensor stack_v2(Tensor max_size, TF_DataType elem_type, string stack_name = "", | |||
string name = null) | |||
{ | |||
var _op = _op_def_lib._apply_op_helper("StackV2", name, new | |||
{ | |||
max_size, | |||
elem_type, | |||
stack_name | |||
}); | |||
return _op.output; | |||
} | |||
public static Tensor stack_push_v2(Tensor handle, Tensor elem, bool swap_memory = false, | |||
string name = null) | |||
{ | |||
var _op = _op_def_lib._apply_op_helper("StackPushV2", name, new | |||
{ | |||
handle, | |||
elem, | |||
swap_memory | |||
}); | |||
return _op.output; | |||
} | |||
} | |||
} |
@@ -282,7 +282,7 @@ namespace Tensorflow | |||
/// <param name="dy"></param> | |||
/// <param name="name"></param> | |||
/// <returns></returns> | |||
public static Tensor tanh_grad(Tensor y, Tensor dy, string name = "TanhGrad") | |||
public static Tensor tanh_grad(Tensor y, Tensor dy, string name = null) | |||
=> _op_def_lib._apply_op_helper("TanhGrad", name: name, args: new { y, dy }).output; | |||
public static Tensor floor(Tensor x, string name = null) | |||
@@ -526,6 +526,14 @@ namespace Tensorflow.Util | |||
return pack_sequence_as(structure, mapped_flat_structure) as Tensor; | |||
} | |||
public static Tensor map_structure2<T>(Func<T, Tensor> func, T structure) | |||
{ | |||
var flat_structure = flatten(structure); | |||
var mapped_flat_structure = flat_structure.Select(func).ToList(); | |||
return pack_sequence_as(structure, mapped_flat_structure) as Tensor; | |||
} | |||
/// <summary> | |||
/// Same as map_structure, but with only one structure (no combining of multiple structures) | |||
/// </summary> | |||