@@ -55,6 +55,9 @@ namespace Tensorflow | |||
* is more than one. | |||
**/ | |||
var grads = new Dictionary<string, List<List<Tensor>>>(); | |||
Operation[] reachable_to_ops = null; | |||
ControlFlowState loop_state = null; | |||
Dictionary<string, int> pending_count = null; | |||
tf_with(ops.name_scope(name, "gradients", | |||
values: ys.Concat(xs).Concat(stop_gradients).Concat(grad_ys)), scope => | |||
@@ -81,7 +84,7 @@ namespace Tensorflow | |||
var to_ops = ys.Select(x => x.op).ToList(); | |||
var from_ops = xs.Select(x => x.op).ToList(); | |||
var stop_gradient_ops = stop_gradients.Select(x => x.op).ToList(); | |||
var (reachable_to_ops, pending_count, loop_state) = _PendingCount(to_ops, from_ops, colocate_gradients_with_ops, new List<object>(), xs); | |||
(reachable_to_ops, pending_count, loop_state) = _PendingCount(to_ops, from_ops, colocate_gradients_with_ops, new List<object>(), xs); | |||
// Add the initial gradients for the ys. | |||
foreach (var (y, grad_y) in zip(ys, grad_ys)) | |||
@@ -120,126 +123,135 @@ namespace Tensorflow | |||
{ | |||
// generate gradient subgraph for op. | |||
var op = queue.Dequeue(); | |||
if(op.name == "rnn/while/basic_rnn_cell/Tanh") | |||
if(op.name == "rnn/while/Exit") | |||
{ | |||
} | |||
_maybe_colocate_with(op, gradient_uid, colocate_gradients_with_ops); | |||
//if (loop_state != null) | |||
//loop_state.EnterGradWhileContext(op, before: true); | |||
var out_grads = _AggregatedGrads(grads, op, gradient_uid, loop_state, aggregation_method); | |||
Tensor[] in_grads = null; | |||
var is_partitioned_call = _IsPartitionedCall(op); | |||
var is_func_call = false; | |||
var has_out_grads = out_grads.Exists(x => x != null); | |||
if (has_out_grads && !stop_ops.Contains(op)) | |||
{ | |||
// A grad_fn must be defined, either as a function or as None | |||
// for ops that do not have gradients. | |||
if (loop_state != null) | |||
loop_state.EnterGradWhileContext(op, before: true); | |||
var out_grads = _AggregatedGrads(grads, op, gradient_uid, loop_state, aggregation_method); | |||
if (loop_state != null) | |||
loop_state.ExitGradWhileContext(op, before: true); | |||
Func<Operation, Tensor[], Tensor[]> grad_fn = null; | |||
try | |||
{ | |||
grad_fn = ops.get_gradient_function(op); | |||
} | |||
catch (LookupError) | |||
Tensor[] in_grads = null; | |||
var is_partitioned_call = _IsPartitionedCall(op); | |||
var is_func_call = false; | |||
var has_out_grads = out_grads.Exists(x => x != null); | |||
if (has_out_grads && !stop_ops.Contains(op)) | |||
{ | |||
if (is_func_call) | |||
// A grad_fn must be defined, either as a function or as None | |||
// for ops that do not have gradients. | |||
Func<Operation, Tensor[], Tensor[]> grad_fn = null; | |||
try | |||
{ | |||
if (is_partitioned_call) | |||
grad_fn = ops.get_gradient_function(op); | |||
} | |||
catch (LookupError) | |||
{ | |||
if (is_func_call) | |||
{ | |||
if (is_partitioned_call) | |||
{ | |||
} | |||
else | |||
{ | |||
} | |||
} | |||
else | |||
{ | |||
throw new LookupError($"No gradient defined for operation '{op.name}' (op type: {op.type})"); | |||
} | |||
} | |||
else | |||
{ | |||
throw new LookupError($"No gradient defined for operation '{op.name}' (op type: {op.type})"); | |||
} | |||
} | |||
if (loop_state != null) | |||
loop_state.EnterGradWhileContext(op, before: false); | |||
if (loop_state != null) | |||
loop_state.EnterGradWhileContext(op, before: false); | |||
if ((is_func_call || grad_fn != null) && has_out_grads) | |||
{ | |||
// NOTE: If _AggregatedGrads didn't compute a value for the i'th | |||
// output, it means that the cost does not depend on output[i], | |||
// therefore dC/doutput[i] is 0. | |||
foreach (var (i, out_grad) in enumerate(out_grads)) | |||
if ((is_func_call || grad_fn != null) && has_out_grads) | |||
{ | |||
if (out_grad == null && | |||
(grad_fn == null || _IsTrainable(op.outputs[i]))) | |||
// NOTE: If _AggregatedGrads didn't compute a value for the i'th | |||
// output, it means that the cost does not depend on output[i], | |||
// therefore dC/doutput[i] is 0. | |||
foreach (var (i, out_grad) in enumerate(out_grads)) | |||
{ | |||
// Only trainable outputs or outputs for a function call that | |||
// will use SymbolicGradient get a zero gradient. Gradient | |||
// functions should ignore the gradient for other outputs. | |||
if (loop_state != null) | |||
out_grads[i] = new List<Tensor> { loop_state.ZerosLike(op, i) }; | |||
else | |||
out_grads[i] = new List<Tensor> { control_flow_ops.ZerosLikeOutsideLoop(op, i) }; | |||
if (out_grad == null && | |||
(grad_fn == null || _IsTrainable(op.outputs[i]))) | |||
{ | |||
// Only trainable outputs or outputs for a function call that | |||
// will use SymbolicGradient get a zero gradient. Gradient | |||
// functions should ignore the gradient for other outputs. | |||
if (loop_state != null) | |||
out_grads[i] = new List<Tensor> { loop_state.ZerosLike(op, i) }; | |||
else | |||
out_grads[i] = new List<Tensor> { control_flow_ops.ZerosLikeOutsideLoop(op, i) }; | |||
} | |||
} | |||
} | |||
tf_with(ops.name_scope(op.name + "_grad"), scope1 => | |||
{ | |||
if (grad_fn != null) | |||
tf_with(ops.name_scope(op.name + "_grad"), scope1 => | |||
{ | |||
in_grads = _MaybeCompile(grad_scope, | |||
op, | |||
out_grads.Where(x => x != null).Select(x => x[0]).ToArray(), | |||
null, | |||
grad_fn); | |||
} | |||
else | |||
{ | |||
throw new NotImplementedException("lambda: _SymGrad(op, out_grads)"); | |||
} | |||
_VerifyGeneratedGradients(in_grads, op); | |||
if (gate_gradients && in_grads.Count(x => x != null) > 1) | |||
{ | |||
ops._colocate_with_for_gradient(null, gradient_uid, ignore_existing: true); | |||
in_grads = control_flow_ops.tuple(in_grads); | |||
} | |||
}); | |||
if (grad_fn != null) | |||
{ | |||
in_grads = _MaybeCompile(grad_scope, | |||
op, | |||
out_grads.Where(x => x != null).Select(x => x[0]).ToArray(), | |||
null, | |||
grad_fn); | |||
} | |||
else | |||
{ | |||
throw new NotImplementedException("lambda: _SymGrad(op, out_grads)"); | |||
} | |||
_VerifyGeneratedGradients(in_grads, op); | |||
if (gate_gradients && in_grads.Count(x => x != null) > 1) | |||
{ | |||
ops._colocate_with_for_gradient(null, gradient_uid, ignore_existing: true); | |||
in_grads = control_flow_ops.tuple(in_grads); | |||
} | |||
}); | |||
} | |||
else | |||
{ | |||
// If no grad_fn is defined or none of out_grads is available, | |||
// just propagate a list of None backwards. | |||
in_grads = new Tensor[_NonEagerInputs(op, xs).Count()]; | |||
} | |||
} | |||
else | |||
{ | |||
// If no grad_fn is defined or none of out_grads is available, | |||
// just propagate a list of None backwards. | |||
in_grads = new Tensor[_NonEagerInputs(op, xs).Count()]; | |||
} | |||
} | |||
else | |||
{ | |||
in_grads = new Tensor[_NonEagerInputs(op, xs).Count()]; | |||
} | |||
var inputs = _NonEagerInputs(op, xs).ToList(); | |||
foreach (var (t_in, in_grad) in zip(inputs, in_grads)) | |||
{ | |||
if (in_grad != null) | |||
var inputs = _NonEagerInputs(op, xs).ToList(); | |||
foreach (var (t_in, in_grad) in zip(inputs, in_grads)) | |||
{ | |||
if (!(in_grad is null) && | |||
in_grad.Tag == null && // maybe a IndexedSlice | |||
t_in.dtype != TF_DataType.TF_RESOURCE) | |||
if (in_grad != null) | |||
{ | |||
in_grad.set_shape(t_in.TensorShape); | |||
} | |||
if (!(in_grad is null) && | |||
in_grad.Tag == null && // maybe a IndexedSlice | |||
t_in.dtype != TF_DataType.TF_RESOURCE) | |||
{ | |||
in_grad.set_shape(t_in.TensorShape); | |||
} | |||
_SetGrad(grads, t_in, in_grad); | |||
_SetGrad(grads, t_in, in_grad); | |||
} | |||
} | |||
} | |||
if (loop_state != null) | |||
loop_state.ExitGradWhileContext(op, before: false); | |||
} | |||
// Update pending count for the inputs of op and enqueue ready ops. | |||
_UpdatePendingAndEnqueueReady(grads, op, queue, pending_count, loop_state, xs); | |||
} | |||
}); | |||
if (loop_state != null) | |||
loop_state.PostProcessing(); | |||
return xs.Select(x => _GetGrad(grads, x)).ToArray(); | |||
} | |||
@@ -50,10 +50,11 @@ namespace Tensorflow.Layers | |||
public virtual (Tensor, Tensor) apply(Tensor inputs, Tensor training = null) | |||
{ | |||
return __call__(inputs, training: training); | |||
var results = __call__(inputs, training: training); | |||
return (results[0], results[1]); | |||
} | |||
public (Tensor, Tensor) __call__(Tensor inputs, | |||
public Tensor[] __call__(Tensor inputs, | |||
Tensor training = null, | |||
Tensor state = null, | |||
VariableScope scope = null) | |||
@@ -73,7 +74,7 @@ namespace Tensorflow.Layers | |||
auxiliary_name_scope: false); | |||
} | |||
(Tensor, Tensor) outputs = (null, null); | |||
Tensor[] outputs = null; | |||
tf_with(scope_context_manager, scope2 => | |||
{ | |||
_current_scope = scope2; | |||
@@ -151,27 +151,50 @@ namespace Tensorflow | |||
/// <param name="colocate_gradients_with_ops"></param> | |||
public static ControlFlowState MaybeCreateControlFlowState(List<Operation> between_op_list, List<Operation> between_ops, bool colocate_gradients_with_ops) | |||
{ | |||
var flag = new List<Operation>(); | |||
ControlFlowState loop_state = null; | |||
foreach (var op in between_op_list) | |||
int pos = 0; | |||
while(pos < between_op_list.Count) | |||
{ | |||
var op = between_op_list[pos]; | |||
if (IsLoopExit(op)) | |||
{ | |||
if(loop_state == null) | |||
if (loop_state == null) | |||
{ | |||
loop_state = new ControlFlowState(); | |||
} | |||
if (colocate_gradients_with_ops) | |||
ops.colocate_with(op); | |||
loop_state.AddWhileContext(op, between_op_list, between_ops); | |||
} | |||
pos++; | |||
} | |||
return loop_state; | |||
} | |||
public static bool IsLoopExit(Operation op) | |||
=> op.OpType == "Exit" || op.OpType == "RefExit"; | |||
public static bool IsLoopSwitch(Operation op) | |||
{ | |||
if(IsSwitch(op)) | |||
{ | |||
var ctxt = op._get_control_flow_context(); | |||
return ctxt != null && ctxt.IsWhileContext() && !IsCondSwitch(op); | |||
} | |||
return false; | |||
} | |||
public static bool IsCondSwitch(Operation op) | |||
{ | |||
return op.OpType == "Exit" || op.OpType == "RefExit"; | |||
throw new NotImplementedException("IsCondSwitch"); | |||
} | |||
public static bool IsSwitch(Operation op) | |||
=> op.type == "Switch" || op.type == "RefSwitch"; | |||
public static Tensor[] tuple(Tensor[] tensors, string name = null, Operation[] control_inputs = null) | |||
{ | |||
return tf_with(ops.name_scope(name, "tuple", tensors), scope => | |||
@@ -224,15 +247,10 @@ namespace Tensorflow | |||
//TODO: missing original code | |||
//if context.executing_eagerly(): | |||
// return output_tensor | |||
var values = new List<object>(); | |||
values.AddRange(dependencies); | |||
values.Add(output_tensor); | |||
return tf_with(ops.name_scope(name, "control_dependency", values), scope => | |||
return tf_with(ops.name_scope(name, "control_dependency", new { dependencies, output_tensor }), scope => | |||
{ | |||
name = scope; | |||
// TODO: missing original code | |||
//with ops.colocate_with(output_tensor): | |||
ops.colocate_with(output_tensor); | |||
{ | |||
return tf_with(ops.control_dependencies(dependencies), ctl => | |||
{ | |||
@@ -431,6 +449,7 @@ namespace Tensorflow | |||
var merges = zip(res_f_flat, res_t_flat) | |||
.Select(pair => merge(new Tensor[] { pair.Item1, pair.Item2 })) | |||
.Select(m => (Tensor)m) | |||
.ToArray(); | |||
var merges2 = _convert_flows_to_tensorarrays(new ITensorOrTensorArray[] { (Tensor)orig_res_t }, merges); | |||
@@ -479,6 +498,7 @@ namespace Tensorflow | |||
var merges = zip(res_f_flat, res_t_flat) | |||
.Select(pair => merge(new [] { pair.Item1, pair.Item2 })) | |||
.Select(m => (Tensor)m) | |||
.ToArray(); | |||
var merges2 = _convert_flows_to_tensorarrays(orig_res_t.Select(x => (ITensorOrTensorArray)x).ToArray(), merges); | |||
@@ -519,7 +539,7 @@ namespace Tensorflow | |||
/// <param name="inputs">inputs: The input tensors, at most one of which is available.</param> | |||
/// <param name="name">A name for this operation (optional).</param> | |||
/// <returns></returns> | |||
public static Tensor merge(Tensor[] inputs, string name = null) | |||
public static MergeOutput merge(Tensor[] inputs, string name = null) | |||
{ | |||
if (inputs.Any(x => x == null)) | |||
throw new ValueError($"At least one of the merge inputs is null: {inputs}"); | |||
@@ -529,7 +549,7 @@ namespace Tensorflow | |||
inputs = inputs.Select(inp => | |||
ops.internal_convert_to_tensor_or_indexed_slices(inp, as_ref: true)) | |||
.ToArray(); | |||
return gen_control_flow_ops.merge(inputs, name)[0]; | |||
return gen_control_flow_ops.merge(inputs, name); | |||
}); | |||
} | |||
@@ -602,7 +622,7 @@ namespace Tensorflow | |||
/// <param name="body"></param> | |||
/// <param name="loop_vars"></param> | |||
/// <param name="i"></param> | |||
public static Tensor while_loop<TItem>(Func<TItem, Tensor> cond, Func<TItem, TItem> body, TItem loop_vars, | |||
public static TItem while_loop<TItem>(Func<TItem, Tensor> cond, Func<TItem, TItem> body, TItem loop_vars, | |||
TensorShape[] shape_invariants = null, | |||
int parallel_iterations = 10, | |||
bool back_prop = true, | |||
@@ -611,7 +631,7 @@ namespace Tensorflow | |||
Tensor maximum_iterations = null, | |||
bool return_same_structure = false) | |||
{ | |||
tf_with(ops.name_scope(name, "while", loop_vars), scope => | |||
return tf_with(ops.name_scope(name, "while", loop_vars), scope => | |||
{ | |||
if (loop_vars == null) | |||
throw new ValueError("No loop variables provided"); | |||
@@ -666,13 +686,11 @@ namespace Tensorflow | |||
var results = loop_context.BuildLoop(cond_buildloop, body_buildloop, loop_vars_1, shape_invariants, | |||
return_same_structure); | |||
if (maximum_iterations != null) | |||
return results[1]; | |||
else | |||
return results[0]; | |||
//if (maximum_iterations != null) | |||
return results.Item; | |||
//else | |||
//return results; | |||
}); | |||
throw new NotImplementedException("while_loop"); | |||
} | |||
/// <summary> | |||
@@ -15,6 +15,7 @@ | |||
******************************************************************************/ | |||
using System; | |||
using System.Linq; | |||
using Tensorflow.Operations; | |||
using static Tensorflow.Binding; | |||
@@ -60,6 +61,45 @@ namespace Tensorflow | |||
public static bool IsSwitch(Operation op) | |||
{ | |||
return op.type == "Switch" || op.type == "RefSwitch"; | |||
} | |||
public static WhileContext GetWhileContext(Operation op) | |||
=> op.GetWhileContext(); | |||
public static bool IsCondSwitch(Operation op) | |||
{ | |||
if (!IsSwitch(op)) | |||
return false; | |||
if (op.outputs == null || op.outputs.Length == 0) | |||
return false; | |||
// Switch nodes are not part of the cond control flow context that they | |||
// represent, so consider the consumers of its outputs to determine if it is | |||
// cond switch or not. A switch is a cond switch iff all its consumers are in | |||
// cond contexts. | |||
var is_cond_switch = true; | |||
foreach(var o in op.outputs) | |||
{ | |||
foreach(var c in o.consumers()) | |||
{ | |||
var ctxt = c._get_control_flow_context(); | |||
if (IsLoopEnter(c)) | |||
ctxt = ctxt.outer_context; | |||
is_cond_switch = is_cond_switch &&(ctxt != null && ctxt.IsCondContext()); | |||
} | |||
} | |||
return is_cond_switch; | |||
} | |||
public static bool IsLoopSwitch(Operation op) | |||
{ | |||
if (IsSwitch(op)) | |||
{ | |||
var ctxt = op._get_control_flow_context(); | |||
return ctxt != null && ctxt.IsWhileContext() && !IsCondSwitch(op); | |||
} | |||
return false; | |||
} | |||
/// <summary> | |||
@@ -87,13 +127,64 @@ namespace Tensorflow | |||
valid = true; | |||
else | |||
{ | |||
throw new NotImplementedException(""); | |||
var while_ctxt = GetContainingWhileContext(op_ctxt); | |||
var input_while_ctxt = GetContainingWhileContext(input_ctxt); | |||
if (while_ctxt == null) | |||
{ | |||
throw new NotImplementedException("CheckInputFromValidContext"); | |||
} | |||
else if (IsContainingContext(while_ctxt, input_while_ctxt)) | |||
{ | |||
// input_op is in a while loop which contains op's while loop (or not in a | |||
// while loop at all). | |||
valid = true; | |||
} | |||
else if (while_ctxt.grad_state != null && | |||
IsContainingContext(while_ctxt.grad_state.forward_context, | |||
input_while_ctxt)) | |||
{ | |||
valid = true; | |||
} | |||
else | |||
throw new NotImplementedException("CheckInputFromValidContext"); | |||
} | |||
if (!valid) | |||
{ | |||
throw new NotImplementedException(""); | |||
throw new NotImplementedException("CheckInputFromValidContext"); | |||
} | |||
} | |||
public static Operation GetLoopConstantEnter(Tensor value) | |||
{ | |||
var id_ops = new string[] { "Switch", "RefSwitch", "Identity", "RefIdentity" }; | |||
var op = value.op; | |||
while (id_ops.Contains(op.type)) | |||
op = op.inputs[0].op; | |||
return IsLoopConstantEnter(op) ? op : null; | |||
} | |||
public static bool IsContainingContext(WhileContext ctxt, WhileContext maybe_containing_ctxt) | |||
{ | |||
while(ctxt != maybe_containing_ctxt) | |||
{ | |||
if (ctxt == null) | |||
return false; | |||
ctxt = ctxt.outer_context as WhileContext; | |||
} | |||
return true; | |||
} | |||
public static WhileContext GetContainingWhileContext(ControlFlowContext ctxt, ControlFlowContext stop_ctxt = null) | |||
{ | |||
while (ctxt != null) | |||
{ | |||
if (ctxt.IsWhileContext() || ctxt == stop_ctxt) | |||
return ctxt as WhileContext; | |||
ctxt = ctxt.outer_context; | |||
} | |||
return null; | |||
} | |||
} | |||
} |
@@ -159,6 +159,8 @@ namespace Tensorflow | |||
}); | |||
} | |||
public static Tensor greater_equal<Tx, Ty>(Tx x, Ty y, string name = null) | |||
=> gen_math_ops.greater_equal<Tx, Ty>(x, y, name: name); | |||
public static Tensor equal<Tx, Ty>(Tx x, Ty y, string name = null) | |||
=> gen_math_ops.equal(x, y, name: name); | |||