@@ -152,7 +152,7 @@ namespace Tensorflow | |||
/// <param name="name"></param> | |||
/// <param name="conjugate"></param> | |||
/// <returns></returns> | |||
public Tensor transpose<T1>(T1 a, int[] perm = null, string name = "transpose", bool conjugate = false) | |||
public Tensor transpose<T1>(T1 a, TensorShape perm = null, string name = "transpose", bool conjugate = false) | |||
=> array_ops.transpose(a, perm, name, conjugate); | |||
/// <summary> | |||
@@ -779,7 +779,22 @@ namespace Tensorflow | |||
return gen_array_ops.gather_v2(@params, indices, axis, name: name); | |||
} | |||
public static Tensor transpose<T1, T2>(T1 a, T2 perm, string name = "transpose", bool conjugate = false) | |||
public static Tensor transpose<T1>(T1 a, TensorShape perm, string name = "transpose", bool conjugate = false) | |||
{ | |||
return tf_with(ops.name_scope(name, "transpose", new { a }), scope => | |||
{ | |||
var a_tensor = ops.convert_to_tensor(a); | |||
if(perm == null) | |||
{ | |||
var rank = a_tensor.rank; | |||
perm = range(0, rank).OrderByDescending(x => x).ToArray(); | |||
} | |||
return gen_array_ops.transpose(a_tensor, perm, name: scope); | |||
}); | |||
} | |||
public static Tensor transpose(Tensor a, Tensor perm, string name = "transpose", bool conjugate = false) | |||
{ | |||
return tf_with(ops.name_scope(name, "transpose", new { a }), scope => | |||
{ | |||
@@ -531,7 +531,7 @@ namespace Tensorflow | |||
input, multiples).FirstOrDefault(), | |||
input); | |||
public static Tensor transpose<T1, T2>(T1 x, T2 perm, string name = null) | |||
public static Tensor transpose<T1>(Tensor x, T1 perm, string name = null) | |||
{ | |||
if (tf.Context.executing_eagerly()) | |||
{ | |||
@@ -1,4 +1,4 @@ | |||
/***************************************************************************** | |||
/***************************************************************************** | |||
Copyright 2018 The TensorFlow.NET Authors. All Rights Reserved. | |||
Licensed under the Apache License, Version 2.0 (the "License"); | |||
@@ -619,6 +619,16 @@ namespace Tensorflow | |||
public static Tensor squared_difference(Tensor x, Tensor y, string name = null) | |||
{ | |||
if (tf.Context.executing_eagerly()) | |||
{ | |||
var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName, | |||
"SquaredDifference", name, | |||
null, | |||
x,y); | |||
return results[0]; | |||
} | |||
var _op = tf.OpDefLib._apply_op_helper("SquaredDifference", name, args: new { x, y, name }); | |||
return _op.outputs[0]; | |||
@@ -1210,4 +1220,4 @@ namespace Tensorflow | |||
return _op.outputs[0]; | |||
} | |||
} | |||
} | |||
} |
@@ -1,4 +1,4 @@ | |||
/***************************************************************************** | |||
/***************************************************************************** | |||
Copyright 2018 The TensorFlow.NET Authors. All Rights Reserved. | |||
Licensed under the Apache License, Version 2.0 (the "License"); | |||
@@ -25,7 +25,7 @@ namespace Tensorflow.Keras.Utils | |||
public static Tensor compute_weighted_loss(Tensor losses, Tensor sample_weight = null, string reduction = null, string name = null) | |||
{ | |||
if (sample_weight == null) | |||
sample_weight = tf.constant(1.0f); | |||
sample_weight = losses.dtype == TF_DataType.TF_DOUBLE ? tf.constant(1.0) : tf.constant(1.0f); | |||
var weighted_losses = scale_losses_by_sample_weight(losses, sample_weight); | |||
// Apply reduction function to the individual weighted losses. | |||
var loss = reduce_weighted_loss(weighted_losses, reduction); | |||
@@ -83,6 +83,26 @@ namespace TensorFlowNET.UnitTest.Basics | |||
Assert.AreEqual(nd[2], x[2].numpy()); | |||
} | |||
[TestMethod, Ignore] | |||
public void TypeMismatchedSliceAssign() | |||
{ | |||
NDArray intNd = new int[] | |||
{ | |||
1, -2, 3 | |||
}; | |||
NDArray doubleNd = new double[] | |||
{ | |||
-5, 6, -7 | |||
}; | |||
var x = tf.Variable(doubleNd); | |||
var slice = x[":"]; | |||
Assert.ThrowsException<System.Exception>( | |||
// this statement exit without throwing any exception but the "test execution summary" seems not able to detect that. | |||
() => slice.assign(intNd) | |||
); | |||
} | |||
[TestMethod] | |||
public void Accumulation() | |||
{ | |||
@@ -11,14 +11,70 @@ namespace TensorFlowNET.UnitTest.ManagedAPI | |||
[TestMethod] | |||
public void TransposeTest() | |||
{ | |||
var a = tf.constant(np.array(new[, , ,] { { { { 1, 11, 2, 22 } }, { { 3, 33, 4, 44 } } }, | |||
{ { { 5, 55, 6, 66 } }, { { 7, 77, 8, 88 } } } })); | |||
var b = tf.transpose(a, new[] { 3, 1, 2, 0 }); | |||
var transpose_a = tf.constant(np.array(new[, , ,] { { { { 1, 5 } }, { { 3, 7 } } }, | |||
{ { { 11, 55 } }, { { 33, 77 } } }, { { { 2, 6 } }, { { 4, 8 } } }, | |||
{ { { 22, 66 } }, { { 44, 88 } } } })); | |||
Assert.IsTrue(Enumerable.SequenceEqual(new[] { 4, 2, 1, 2 }, b.shape)); | |||
Assert.IsTrue(Enumerable.SequenceEqual(transpose_a.numpy().ToArray<int>(), b.numpy().ToArray<int>())); | |||
// https://www.tensorflow.org/api_docs/python/tf/transpose#for_example_2 | |||
var x = tf.constant(new int[,] | |||
{ | |||
{ 1, 2, 3 }, | |||
{ 4, 5, 6 } | |||
}); | |||
var transpose_x = tf.transpose(x); | |||
Assert.AreEqual(new[] { 1, 4 }, transpose_x[0].numpy()); | |||
Assert.AreEqual(new[] { 2, 5 }, transpose_x[1].numpy()); | |||
Assert.AreEqual(new[] { 3, 6 }, transpose_x[2].numpy()); | |||
#region constant a | |||
var a = tf.constant(np.array(new[, , ,] | |||
{ | |||
{ | |||
{ | |||
{ 1, 11, 2, 22 } | |||
}, | |||
{ | |||
{ 3, 33, 4, 44 } | |||
} | |||
}, | |||
{ | |||
{ | |||
{ 5, 55, 6, 66 } | |||
}, | |||
{ | |||
{ 7, 77, 8, 88 } | |||
} | |||
} | |||
})); | |||
#endregion | |||
var actual_transposed_a = tf.transpose(a, new[] { 3, 1, 2, 0 }); | |||
#region constant transpose_a | |||
var expected_transposed_a = tf.constant(np.array(new[, , ,] | |||
{ | |||
{ | |||
{ { 1, 5 } }, { { 3, 7 } } | |||
}, | |||
{ | |||
{ { 11, 55 } }, { { 33, 77 } } | |||
}, | |||
{ | |||
{ | |||
{ 2, 6 } | |||
}, | |||
{ | |||
{ 4, 8 } | |||
} | |||
}, | |||
{ | |||
{ | |||
{ 22, 66 } | |||
}, | |||
{ | |||
{ 44, 88 } | |||
} | |||
} | |||
})); | |||
#endregion | |||
Assert.AreEqual((4, 2, 1, 2 ), actual_transposed_a.TensorShape); | |||
Assert.AreEqual(expected_transposed_a.numpy(), actual_transposed_a.numpy()); | |||
} | |||
[TestMethod] | |||