@@ -1702,74 +1702,79 @@ new_height, new_width"); | |||
public static Tensor decode_image(Tensor contents, int channels = 0, TF_DataType dtype = TF_DataType.TF_UINT8, | |||
string name = null, bool expand_animations = true) | |||
{ | |||
Func<ITensorOrOperation> _jpeg = () => | |||
return tf_with(ops.name_scope(name, "decode_image"), scope => | |||
{ | |||
int jpeg_channels = channels; | |||
var good_channels = math_ops.not_equal(jpeg_channels, 4, name: "check_jpeg_channels"); | |||
string channels_msg = "Channels must be in (None, 0, 1, 3) when decoding JPEG 'images'"; | |||
var assert_channels = control_flow_ops.Assert(good_channels, new string[] { channels_msg }); | |||
return tf_with(ops.control_dependencies(new[] { assert_channels }), delegate | |||
var substr = tf.strings.substr(contents, 0, 3); | |||
Func<ITensorOrOperation> _jpeg = () => | |||
{ | |||
return convert_image_dtype(gen_image_ops.decode_jpeg(contents, channels), dtype); | |||
}); | |||
}; | |||
int jpeg_channels = channels; | |||
var good_channels = math_ops.not_equal(jpeg_channels, 4, name: "check_jpeg_channels"); | |||
string channels_msg = "Channels must be in (None, 0, 1, 3) when decoding JPEG 'images'"; | |||
var assert_channels = control_flow_ops.Assert(good_channels, new string[] { channels_msg }); | |||
return tf_with(ops.control_dependencies(new[] { assert_channels }), delegate | |||
{ | |||
return convert_image_dtype(gen_image_ops.decode_jpeg(contents, channels), dtype); | |||
}); | |||
}; | |||
Func<ITensorOrOperation> _gif = () => | |||
{ | |||
int gif_channels = channels; | |||
var good_channels = math_ops.logical_and( | |||
math_ops.not_equal(gif_channels, 1, name: "check_gif_channels"), | |||
math_ops.not_equal(gif_channels, 4, name: "check_gif_channels")); | |||
string channels_msg = "Channels must be in (None, 0, 3) when decoding GIF images"; | |||
var assert_channels = control_flow_ops.Assert(good_channels, new string[] { channels_msg }); | |||
return tf_with(ops.control_dependencies(new[] { assert_channels }), delegate | |||
/*Func<ITensorOrOperation> _gif = () => | |||
{ | |||
var result = convert_image_dtype(gen_image_ops.decode_gif(contents), dtype); | |||
if (!expand_animations) | |||
result = array_ops.gather(result, 0); | |||
return result; | |||
}); | |||
}; | |||
int gif_channels = channels; | |||
var good_channels = math_ops.logical_and( | |||
math_ops.not_equal(gif_channels, 1, name: "check_gif_channels"), | |||
math_ops.not_equal(gif_channels, 4, name: "check_gif_channels")); | |||
string channels_msg = "Channels must be in (None, 0, 3) when decoding GIF images"; | |||
var assert_channels = control_flow_ops.Assert(good_channels, new string[] { channels_msg }); | |||
return tf_with(ops.control_dependencies(new[] { assert_channels }), delegate | |||
{ | |||
var result = convert_image_dtype(gen_image_ops.decode_gif(contents), dtype); | |||
if (!expand_animations) | |||
result = array_ops.gather(result, 0); | |||
return result; | |||
}); | |||
}; | |||
Func<ITensorOrOperation> _bmp = () => | |||
{ | |||
int bmp_channels = channels; | |||
var signature = tf.strings.substr(contents, 0, 2); | |||
var is_bmp = math_ops.equal(signature, "BM", name: "is_bmp"); | |||
string decode_msg = "Unable to decode bytes as JPEG, PNG, GIF, or BMP"; | |||
var assert_decode = control_flow_ops.Assert(is_bmp, new string[] { decode_msg }); | |||
var good_channels = math_ops.not_equal(bmp_channels, 1, name: "check_channels"); | |||
string channels_msg = "Channels must be in (None, 0, 3) when decoding BMP images"; | |||
var assert_channels = control_flow_ops.Assert(good_channels, new string[] { channels_msg }); | |||
return tf_with(ops.control_dependencies(new[] { assert_decode, assert_channels }), delegate | |||
Func<ITensorOrOperation> _bmp = () => | |||
{ | |||
return convert_image_dtype(gen_image_ops.decode_bmp(contents), dtype); | |||
}); | |||
}; | |||
int bmp_channels = channels; | |||
var signature = tf.strings.substr(contents, 0, 2); | |||
var is_bmp = math_ops.equal(signature, "BM", name: "is_bmp"); | |||
string decode_msg = "Unable to decode bytes as JPEG, PNG, GIF, or BMP"; | |||
var assert_decode = control_flow_ops.Assert(is_bmp, new string[] { decode_msg }); | |||
var good_channels = math_ops.not_equal(bmp_channels, 1, name: "check_channels"); | |||
string channels_msg = "Channels must be in (None, 0, 3) when decoding BMP images"; | |||
var assert_channels = control_flow_ops.Assert(good_channels, new string[] { channels_msg }); | |||
return tf_with(ops.control_dependencies(new[] { assert_decode, assert_channels }), delegate | |||
{ | |||
return convert_image_dtype(gen_image_ops.decode_bmp(contents), dtype); | |||
}); | |||
}; | |||
Func<ITensorOrOperation> _png = () => | |||
{ | |||
return convert_image_dtype(gen_image_ops.decode_png( | |||
contents, | |||
channels, | |||
dtype: dtype), | |||
dtype); | |||
}; | |||
Func<ITensorOrOperation> _png = () => | |||
{ | |||
return convert_image_dtype(gen_image_ops.decode_png( | |||
contents, | |||
channels, | |||
dtype: dtype), | |||
dtype); | |||
}; | |||
Func<ITensorOrOperation> check_gif = () => | |||
{ | |||
return control_flow_ops.cond(is_gif(contents), _gif, _bmp, name: "cond_gif"); | |||
}; | |||
Func<ITensorOrOperation> check_gif = () => | |||
{ | |||
var gif = tf.constant(new byte[] { 0x47, 0x49, 0x46 }, TF_DataType.TF_STRING); | |||
var is_gif = math_ops.equal(substr, gif, name: name); | |||
return control_flow_ops.cond(is_gif, _gif, _bmp, name: "cond_gif"); | |||
}; | |||
Func<ITensorOrOperation> check_png = () => | |||
{ | |||
return control_flow_ops.cond(is_png(contents), _png, check_gif, name: "cond_png"); | |||
}; | |||
Func<ITensorOrOperation> check_png = () => | |||
{ | |||
return control_flow_ops.cond(is_png(contents), _png, check_gif, name: "cond_png"); | |||
};*/ | |||
return tf_with(ops.name_scope(name, "decode_image"), scope => | |||
{ | |||
return control_flow_ops.cond(is_jpeg(contents), _jpeg, check_png, name: "cond_jpeg"); | |||
// return control_flow_ops.cond(is_jpeg(contents), _jpeg, check_png, name: "cond_jpeg"); | |||
return _jpeg() as Tensor; | |||
}); | |||
} | |||
@@ -5,7 +5,7 @@ | |||
<AssemblyName>TensorFlow.NET</AssemblyName> | |||
<RootNamespace>Tensorflow</RootNamespace> | |||
<TargetTensorFlow>2.2.0</TargetTensorFlow> | |||
<Version>0.31.1</Version> | |||
<Version>0.31.2</Version> | |||
<LangVersion>8.0</LangVersion> | |||
<Authors>Haiping Chen, Meinrad Recheis, Eli Belash</Authors> | |||
<Company>SciSharp STACK</Company> | |||
@@ -19,7 +19,7 @@ | |||
<Description>Google's TensorFlow full binding in .NET Standard. | |||
Building, training and infering deep learning models. | |||
https://tensorflownet.readthedocs.io</Description> | |||
<AssemblyVersion>0.31.1.0</AssemblyVersion> | |||
<AssemblyVersion>0.31.2.0</AssemblyVersion> | |||
<PackageReleaseNotes>tf.net 0.20.x and above are based on tensorflow native 2.x. | |||
* Eager Mode is added finally. | |||
@@ -30,7 +30,7 @@ https://tensorflownet.readthedocs.io</Description> | |||
TensorFlow .NET v0.30 is focused on making more Keras API work including: | |||
* tf.keras.datasets | |||
* Building keras model in subclass, functional and sequential api</PackageReleaseNotes> | |||
<FileVersion>0.31.1.0</FileVersion> | |||
<FileVersion>0.31.2.0</FileVersion> | |||
<PackageLicenseFile>LICENSE</PackageLicenseFile> | |||
<PackageRequireLicenseAcceptance>true</PackageRequireLicenseAcceptance> | |||
<SignAssembly>true</SignAssembly> | |||
@@ -20,6 +20,7 @@ using System.Collections.Generic; | |||
using System.Linq; | |||
using System.Text; | |||
using Tensorflow.Eager; | |||
using static Tensorflow.Binding; | |||
namespace Tensorflow | |||
{ | |||
@@ -410,14 +411,10 @@ would not be rank 1.", tensor.op.get_attr("axis"))); | |||
var value = constant_value(tensor); | |||
if (!(value is null)) | |||
{ | |||
int[] d_ = { }; | |||
foreach (int d in value) | |||
{ | |||
if (d >= 0) | |||
d_[d_.Length] = d; | |||
else | |||
d_[d_.Length] = -1; // None | |||
} | |||
var d_ = new int[value.size]; | |||
foreach (var (index, d) in enumerate(value.ToArray<int>())) | |||
d_[index] = d >= 0 ? d : -1; | |||
ret = ret.merge_with(new TensorShape(d_)); | |||
} | |||
return ret; | |||
@@ -40,8 +40,8 @@ namespace Tensorflow.Keras.Preprocessings | |||
labels.AddRange(Enumerable.Range(0, files.Length).Select(x => label)); | |||
} | |||
var return_labels = new int[labels.Count]; | |||
var return_file_paths = new string[file_paths.Count]; | |||
var return_labels = labels.Select(x => x).ToArray(); | |||
var return_file_paths = file_paths.Select(x => x).ToArray(); | |||
if (shuffle) | |||
{ | |||
@@ -41,7 +41,7 @@ namespace Tensorflow.Keras | |||
int num_channels = 0; | |||
if (color_mode == "rgb") | |||
num_channels = 3; | |||
// C:/Users/haipi/.keras/datasets/flower_photos | |||
var (image_paths, label_list, class_name_list) = keras.preprocessing.dataset_utils.index_directory(directory, | |||
formats: WHITELIST_FORMATS, | |||
class_names: class_names, | |||
@@ -16,27 +16,11 @@ namespace Tensorflow.Keras | |||
var path_ds = tf.data.Dataset.from_tensor_slices(image_paths); | |||
var img_ds = path_ds.map(x => path_to_image(x, image_size, num_channels, interpolation)); | |||
/*Shape shape = (image_paths.Length, image_size.dims[0], image_size.dims[1], num_channels); | |||
Console.WriteLine($"Allocating memory for shape{shape}, {NPTypeCode.Float}"); | |||
var data = np.zeros(shape, NPTypeCode.Float); | |||
for (var i = 0; i < image_paths.Length; i++) | |||
{ | |||
var image = path_to_image(image_paths[i], image_size, num_channels, interpolation); | |||
data[i] = image.numpy(); | |||
if (i % 100 == 0) | |||
Console.WriteLine($"Filled {i}/{image_paths.Length} data into ndarray."); | |||
} | |||
var img_ds = tf.data.Dataset.from_tensor_slices(data); | |||
if (label_mode == "int") | |||
{ | |||
var label_ds = tf.keras.preprocessing.dataset_utils.labels_to_dataset(labels, label_mode, num_classes); | |||
var label_ds = dataset_utils.labels_to_dataset(labels, label_mode, num_classes); | |||
img_ds = tf.data.Dataset.zip(img_ds, label_ds); | |||
} | |||
else*/ | |||
throw new NotImplementedException(""); | |||
return img_ds; | |||
} | |||
@@ -47,6 +31,7 @@ namespace Tensorflow.Keras | |||
img = tf.image.decode_image( | |||
img, channels: num_channels, expand_animations: false); | |||
img = tf.image.resize_images_v2(img, image_size, method: interpolation); | |||
img.set_shape((image_size[0], image_size[1], num_channels)); | |||
return img; | |||
} | |||
} | |||
@@ -6,7 +6,7 @@ | |||
<LangVersion>8.0</LangVersion> | |||
<RootNamespace>Tensorflow.Keras</RootNamespace> | |||
<Platforms>AnyCPU;x64</Platforms> | |||
<Version>0.2.1</Version> | |||
<Version>0.3.0</Version> | |||
<Authors>Haiping Chen</Authors> | |||
<Product>Keras for .NET</Product> | |||
<Copyright>Apache 2.0, Haiping Chen 2020</Copyright> | |||
@@ -25,11 +25,13 @@ Keras is an API designed for human beings, not machines. Keras follows best prac | |||
<Company>SciSharp STACK</Company> | |||
<GeneratePackageOnBuild>true</GeneratePackageOnBuild> | |||
<PackageTags>tensorflow, keras, deep learning, machine learning</PackageTags> | |||
<PackageRequireLicenseAcceptance>false</PackageRequireLicenseAcceptance> | |||
<PackageRequireLicenseAcceptance>true</PackageRequireLicenseAcceptance> | |||
<RepositoryType>Git</RepositoryType> | |||
<SignAssembly>true</SignAssembly> | |||
<AssemblyOriginatorKeyFile>Open.snk</AssemblyOriginatorKeyFile> | |||
<AssemblyVersion>0.2.1.0</AssemblyVersion> | |||
<AssemblyVersion>0.3.0.0</AssemblyVersion> | |||
<FileVersion>0.3.0.0</FileVersion> | |||
<PackageLicenseFile>LICENSE</PackageLicenseFile> | |||
</PropertyGroup> | |||
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|AnyCPU'"> | |||
@@ -55,4 +57,11 @@ Keras is an API designed for human beings, not machines. Keras follows best prac | |||
<ProjectReference Include="..\TensorFlowNET.Core\Tensorflow.Binding.csproj" /> | |||
</ItemGroup> | |||
<ItemGroup> | |||
<None Include="..\..\LICENSE"> | |||
<Pack>True</Pack> | |||
<PackagePath></PackagePath> | |||
</None> | |||
</ItemGroup> | |||
</Project> |