@@ -1,27 +1,92 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.IO; | |||
using System.Text; | |||
namespace Tensorflow.Estimator | |||
{ | |||
public class HyperParams | |||
{ | |||
public string data_dir { get; set; } | |||
public string result_dir { get; set; } | |||
public string model_dir { get; set; } | |||
public string eval_dir { get; set; } | |||
/// <summary> | |||
/// root dir | |||
/// </summary> | |||
public string data_root_dir { get; set; } | |||
/// <summary> | |||
/// results dir | |||
/// </summary> | |||
public string result_dir { get; set; } = "results"; | |||
/// <summary> | |||
/// model dir | |||
/// </summary> | |||
public string model_dir { get; set; } = "model"; | |||
public string eval_dir { get; set; } = "eval"; | |||
public string test_dir { get; set; } = "test"; | |||
public int dim { get; set; } = 300; | |||
public float dropout { get; set; } = 0.5f; | |||
public int num_oov_buckets { get; set; } = 1; | |||
public int epochs { get; set; } = 25; | |||
public int epoch_no_imprv { get; set; } = 3; | |||
public int batch_size { get; set; } = 20; | |||
public int buffer { get; set; } = 15000; | |||
public int lstm_size { get; set; } = 100; | |||
public string lr_method { get; set; } = "adam"; | |||
public float lr { get; set; } = 0.001f; | |||
public float lr_decay { get; set; } = 0.9f; | |||
/// <summary> | |||
/// lstm on chars | |||
/// </summary> | |||
public int hidden_size_char { get; set; } = 100; | |||
/// <summary> | |||
/// lstm on word embeddings | |||
/// </summary> | |||
public int hidden_size_lstm { get; set; } = 300; | |||
/// <summary> | |||
/// is clipping | |||
/// </summary> | |||
public bool clip { get; set; } = false; | |||
public string filepath_dev { get; set; } | |||
public string filepath_test { get; set; } | |||
public string filepath_train { get; set; } | |||
public string filepath_words { get; set; } | |||
public string filepath_chars { get; set; } | |||
public string filepath_tags { get; set; } | |||
public string filepath_glove { get; set; } | |||
public HyperParams(string dataDir) | |||
{ | |||
data_root_dir = dataDir; | |||
if (string.IsNullOrEmpty(data_root_dir)) | |||
throw new ValueError("Please specifiy the root data directory"); | |||
if (!Directory.Exists(data_root_dir)) | |||
Directory.CreateDirectory(data_root_dir); | |||
result_dir = Path.Combine(data_root_dir, result_dir); | |||
if (!Directory.Exists(result_dir)) | |||
Directory.CreateDirectory(result_dir); | |||
model_dir = Path.Combine(result_dir, model_dir); | |||
if (!Directory.Exists(model_dir)) | |||
Directory.CreateDirectory(model_dir); | |||
test_dir = Path.Combine(result_dir, test_dir); | |||
if (!Directory.Exists(test_dir)) | |||
Directory.CreateDirectory(test_dir); | |||
public string words { get; set; } | |||
public string chars { get; set; } | |||
public string tags { get; set; } | |||
public string glove { get; set; } | |||
eval_dir = Path.Combine(result_dir, eval_dir); | |||
if (!Directory.Exists(eval_dir)) | |||
Directory.CreateDirectory(eval_dir); | |||
} | |||
} | |||
} |
@@ -101,9 +101,18 @@ namespace Tensorflow | |||
switch (col.Key) | |||
{ | |||
case "cond_context": | |||
var proto = CondContextDef.Parser.ParseFrom(value); | |||
var condContext = new CondContext().from_proto(proto, import_scope); | |||
graph.add_to_collection(col.Key, condContext); | |||
{ | |||
var proto = CondContextDef.Parser.ParseFrom(value); | |||
var condContext = new CondContext().from_proto(proto, import_scope); | |||
graph.add_to_collection(col.Key, condContext); | |||
} | |||
break; | |||
case "while_context": | |||
{ | |||
var proto = WhileContextDef.Parser.ParseFrom(value); | |||
var whileContext = new WhileContext().from_proto(proto, import_scope); | |||
graph.add_to_collection(col.Key, whileContext); | |||
} | |||
break; | |||
default: | |||
throw new NotImplementedException("import_scoped_meta_graph_with_return_elements"); | |||
@@ -32,6 +32,22 @@ namespace Tensorflow.Gradients | |||
return new Tensor[] { r1, r2 }; | |||
} | |||
/// <summary> | |||
/// Returns grad * exp(x). | |||
/// </summary> | |||
/// <param name="op"></param> | |||
/// <param name="grads"></param> | |||
/// <returns></returns> | |||
public static Tensor[] _ExpGrad(Operation op, Tensor[] grads) | |||
{ | |||
var grad = grads[0]; | |||
var y = op.outputs[0]; // y = e^x | |||
return with(ops.control_dependencies(new Operation[] { grad }), dp => { | |||
y = math_ops.conj(y); | |||
return new Tensor[] { math_ops.mul_no_nan(y, grad) }; | |||
}); | |||
} | |||
public static Tensor[] _IdGrad(Operation op, Tensor[] grads) | |||
{ | |||
return new Tensor[] { grads[0] }; | |||
@@ -22,6 +22,8 @@ namespace Tensorflow | |||
return math_grad._AddGrad(oper, out_grads); | |||
case "BiasAdd": | |||
return nn_grad._BiasAddGrad(oper, out_grads); | |||
case "Exp": | |||
return math_grad._ExpGrad(oper, out_grads); | |||
case "Identity": | |||
return math_grad._IdGrad(oper, out_grads); | |||
case "Log": | |||
@@ -160,7 +160,14 @@ namespace Tensorflow | |||
} | |||
else if (!name.Contains(":") & !allow_operation) | |||
{ | |||
throw new NotImplementedException("_as_graph_element_locked"); | |||
// Looks like an Operation name but can't be an Operation. | |||
if (_nodes_by_name.ContainsKey(name)) | |||
// Yep, it's an Operation name | |||
throw new ValueError($"The name {name} refers to an Operation, not a {types_str}."); | |||
else | |||
throw new ValueError( | |||
$"The name {name} looks like an (invalid) Operation name, not a {types_str}" + | |||
" Tensor names must be of the form \"<op_name>:<output_index>\"."); | |||
} | |||
} | |||
@@ -198,6 +198,8 @@ namespace Tensorflow.Operations | |||
{ | |||
case CtxtOneofCase.CondCtxt: | |||
return new CondContext().from_proto(context_def.CondCtxt, import_scope: import_scope); | |||
case CtxtOneofCase.WhileCtxt: | |||
return new WhileContext().from_proto(context_def.WhileCtxt, import_scope: import_scope); | |||
} | |||
throw new NotImplementedException($"Unknown ControlFlowContextDef field: {context_def.CtxtCase}"); | |||
@@ -2,14 +2,70 @@ | |||
using System.Collections.Generic; | |||
using System.Text; | |||
using Tensorflow.Operations.ControlFlows; | |||
using static Tensorflow.Python; | |||
namespace Tensorflow.Operations | |||
{ | |||
/// <summary> | |||
/// Creates a `WhileContext`. | |||
/// </summary> | |||
public class WhileContext : ControlFlowContext | |||
{ | |||
private bool _back_prop=true; | |||
bool _back_prop=true; | |||
GradLoopState _grad_state =null; | |||
Tensor _maximum_iterations; | |||
int _parallel_iterations; | |||
bool _swap_memory; | |||
Tensor _pivot_for_pred; | |||
Tensor _pivot_for_body; | |||
Tensor[] _loop_exits; | |||
Tensor[] _loop_enters; | |||
private GradLoopState _grad_state =null; | |||
public WhileContext(int parallel_iterations = 10, | |||
bool back_prop = true, | |||
bool swap_memory = false, | |||
string name = "while_context", | |||
GradLoopState grad_state = null, | |||
WhileContextDef context_def = null, | |||
string import_scope = null) | |||
{ | |||
if (context_def != null) | |||
{ | |||
_init_from_proto(context_def, import_scope: import_scope); | |||
} | |||
else | |||
{ | |||
} | |||
_grad_state = grad_state; | |||
} | |||
private void _init_from_proto(WhileContextDef context_def, string import_scope = null) | |||
{ | |||
var g = ops.get_default_graph(); | |||
_name = ops.prepend_name_scope(context_def.ContextName, import_scope); | |||
if (!string.IsNullOrEmpty(context_def.MaximumIterationsName)) | |||
_maximum_iterations = g.as_graph_element(ops.prepend_name_scope(context_def.MaximumIterationsName, import_scope)) as Tensor; | |||
_parallel_iterations = context_def.ParallelIterations; | |||
_back_prop = context_def.BackProp; | |||
_swap_memory = context_def.SwapMemory; | |||
_pivot_for_pred = g.as_graph_element(ops.prepend_name_scope(context_def.PivotForPredName, import_scope)) as Tensor; | |||
// We use this node to control constants created by the body lambda. | |||
_pivot_for_body = g.as_graph_element(ops.prepend_name_scope(context_def.PivotForBodyName, import_scope)) as Tensor; | |||
// The boolean tensor for loop termination condition. | |||
_pivot = g.as_graph_element(ops.prepend_name_scope(context_def.PivotName, import_scope)) as Tensor; | |||
// The list of exit tensors for loop variables. | |||
_loop_exits = new Tensor[context_def.LoopExitNames.Count]; | |||
foreach (var (i, exit_name) in enumerate(context_def.LoopExitNames)) | |||
_loop_exits[i] = g.as_graph_element(ops.prepend_name_scope(exit_name, import_scope)) as Tensor; | |||
// The list of enter tensors for loop variables. | |||
_loop_enters = new Tensor[context_def.LoopEnterNames.Count]; | |||
foreach (var (i, enter_name) in enumerate(context_def.LoopEnterNames)) | |||
_loop_enters[i] = g.as_graph_element(ops.prepend_name_scope(enter_name, import_scope)) as Tensor; | |||
__init__(values_def: context_def.ValuesDef, import_scope: import_scope); | |||
} | |||
public override WhileContext GetWhileContext() | |||
{ | |||
@@ -21,9 +77,15 @@ namespace Tensorflow.Operations | |||
public override bool back_prop => _back_prop; | |||
public static WhileContext from_proto(object proto) | |||
public WhileContext from_proto(WhileContextDef proto, string import_scope) | |||
{ | |||
throw new NotImplementedException(); | |||
var ret = new WhileContext(context_def: proto, import_scope: import_scope); | |||
ret.Enter(); | |||
foreach (var nested_def in proto.NestedContexts) | |||
from_control_flow_context_def(nested_def, import_scope: import_scope); | |||
ret.Exit(); | |||
return ret; | |||
} | |||
public object to_proto() | |||
@@ -352,6 +352,13 @@ namespace Tensorflow | |||
return _op.outputs[0]; | |||
} | |||
public static Tensor mul_no_nan<Tx, Ty>(Tx x, Ty y, string name = null) | |||
{ | |||
var _op = _op_def_lib._apply_op_helper("MulNoNan", name, args: new { x, y }); | |||
return _op.outputs[0]; | |||
} | |||
public static Tensor real_div(Tensor x, Tensor y, string name = null) | |||
{ | |||
var _op = _op_def_lib._apply_op_helper("RealDiv", name, args: new { x, y }); | |||
@@ -71,6 +71,9 @@ namespace Tensorflow | |||
public static Tensor multiply(Tensor x, Tensor y, string name = null) | |||
=> gen_math_ops.mul(x, y, name: name); | |||
public static Tensor mul_no_nan(Tensor x, Tensor y, string name = null) | |||
=> gen_math_ops.mul_no_nan(x, y, name: name); | |||
/// <summary> | |||
/// Computes the mean of elements across dimensions of a tensor. | |||
/// Reduces `input_tensor` along the dimensions given in `axis`. | |||
@@ -1,5 +1,6 @@ | |||
using NumSharp; | |||
using System; | |||
using System.Collections; | |||
using System.Collections.Generic; | |||
using System.Linq; | |||
using System.Runtime.InteropServices; | |||
@@ -18,7 +19,7 @@ namespace Tensorflow | |||
public BaseSession(string target = "", Graph graph = null) | |||
{ | |||
if(graph is null) | |||
if (graph is null) | |||
{ | |||
_graph = ops.get_default_graph(); | |||
} | |||
@@ -40,6 +41,13 @@ namespace Tensorflow | |||
return _run(fetches, feed_dict); | |||
} | |||
public virtual NDArray run(object fetches, Hashtable feed_dict = null) | |||
{ | |||
var feed_items = feed_dict == null ? new FeedItem[0] : | |||
feed_dict.Keys.OfType<object>().Select(key => new FeedItem(key, feed_dict[key])).ToArray(); | |||
return _run(fetches, feed_items); | |||
} | |||
private NDArray _run(object fetches, FeedItem[] feed_dict = null) | |||
{ | |||
var feed_dict_tensor = new Dictionary<object, object>(); | |||
@@ -89,11 +97,17 @@ namespace Tensorflow | |||
case byte[] val: | |||
feed_dict_tensor[subfeed_t] = (NDArray)val; | |||
break; | |||
case bool val: | |||
feed_dict_tensor[subfeed_t] = (NDArray)val; | |||
break; | |||
case bool[] val: | |||
feed_dict_tensor[subfeed_t] = (NDArray)val; | |||
break; | |||
default: | |||
Console.WriteLine($"can't handle data type of subfeed_val"); | |||
throw new NotImplementedException("_run subfeed"); | |||
} | |||
} | |||
feed_map[subfeed_t.name] = (subfeed_t, subfeed_val); | |||
} | |||
} | |||
@@ -132,9 +146,9 @@ namespace Tensorflow | |||
/// </returns> | |||
private NDArray[] _do_run(List<Operation> target_list, List<Tensor> fetch_list, Dictionary<object, object> feed_dict) | |||
{ | |||
var feeds = feed_dict.Select(x => | |||
var feeds = feed_dict.Select(x => | |||
{ | |||
if(x.Key is Tensor tensor) | |||
if (x.Key is Tensor tensor) | |||
{ | |||
switch (x.Value) | |||
{ | |||
@@ -0,0 +1,11 @@ | |||
using System; | |||
using System.Collections; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
namespace Tensorflow.Sessions | |||
{ | |||
public class FeedDict : Hashtable | |||
{ | |||
} | |||
} |
@@ -49,7 +49,7 @@ Add Word2Vec example.</PackageReleaseNotes> | |||
<ItemGroup> | |||
<PackageReference Include="Google.Protobuf" Version="3.7.0" /> | |||
<PackageReference Include="NumSharp" Version="0.10.0" /> | |||
<PackageReference Include="NumSharp" Version="0.10.1" /> | |||
</ItemGroup> | |||
<ItemGroup> | |||
@@ -55,6 +55,10 @@ namespace Tensorflow | |||
var nd1 = nd.ravel(); | |||
switch (nd.dtype.Name) | |||
{ | |||
case "Boolean": | |||
var boolVals = Array.ConvertAll(nd1.Data<bool>(), x => Convert.ToByte(x)); | |||
Marshal.Copy(boolVals, 0, dotHandle, nd.size); | |||
break; | |||
case "Int16": | |||
Marshal.Copy(nd1.Data<short>(), 0, dotHandle, nd.size); | |||
break; | |||
@@ -191,6 +191,8 @@ namespace Tensorflow | |||
return TF_DataType.TF_INT16; | |||
case "Int32": | |||
return TF_DataType.TF_INT32; | |||
case "Int64": | |||
return TF_DataType.TF_INT64; | |||
case "Single": | |||
return TF_DataType.TF_FLOAT; | |||
case "Double": | |||
@@ -199,6 +201,8 @@ namespace Tensorflow | |||
return TF_DataType.TF_UINT8; | |||
case "String": | |||
return TF_DataType.TF_STRING; | |||
case "Boolean": | |||
return TF_DataType.TF_BOOL; | |||
default: | |||
throw new NotImplementedException("ToTFDataType error"); | |||
} | |||
@@ -120,6 +120,9 @@ namespace Tensorflow | |||
case List<CondContext> values: | |||
foreach (var element in values) ; | |||
break; | |||
case List<WhileContext> values: | |||
foreach (var element in values) ; | |||
break; | |||
default: | |||
throw new NotImplementedException("_build_internal.check_collection_list"); | |||
} | |||
@@ -0,0 +1 @@ | |||
|
@@ -0,0 +1,63 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.IO; | |||
using System.Text; | |||
using Tensorflow; | |||
using TensorFlowNET.Examples.Utility; | |||
using static Tensorflow.Python; | |||
namespace TensorFlowNET.Examples.ImageProcess | |||
{ | |||
/// <summary> | |||
/// This example removes the background from an input image. | |||
/// | |||
/// https://github.com/susheelsk/image-background-removal | |||
/// </summary> | |||
public class ImageBackgroundRemoval : IExample | |||
{ | |||
public int Priority => 15; | |||
public bool Enabled { get; set; } = true; | |||
public bool ImportGraph { get; set; } = true; | |||
public string Name => "Image Background Removal"; | |||
string dataDir = "deeplabv3"; | |||
string modelDir = "deeplabv3_mnv2_pascal_train_aug"; | |||
string modelName = "frozen_inference_graph.pb"; | |||
public bool Run() | |||
{ | |||
PrepareData(); | |||
// import GraphDef from pb file | |||
var graph = new Graph().as_default(); | |||
graph.Import(Path.Join(dataDir, modelDir, modelName)); | |||
Tensor output = graph.OperationByName("SemanticPredictions"); | |||
with(tf.Session(graph), sess => | |||
{ | |||
// Runs inference on a single image. | |||
sess.run(output, new FeedItem(output, "[np.asarray(resized_image)]")); | |||
}); | |||
return false; | |||
} | |||
public void PrepareData() | |||
{ | |||
// get mobile_net_model file | |||
string fileName = "deeplabv3_mnv2_pascal_train_aug_2018_01_29.tar.gz"; | |||
string url = $"http://download.tensorflow.org/models/{fileName}"; | |||
Web.Download(url, dataDir, fileName); | |||
Compress.ExtractTGZ(Path.Join(dataDir, fileName), dataDir); | |||
// xception_model, better accuracy | |||
/*fileName = "deeplabv3_pascal_train_aug_2018_01_04.tar.gz"; | |||
url = $"http://download.tensorflow.org/models/{fileName}"; | |||
Web.Download(url, modelDir, fileName); | |||
Compress.ExtractTGZ(Path.Join(modelDir, fileName), modelDir);*/ | |||
} | |||
} | |||
} |
@@ -1,43 +0,0 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.IO; | |||
using System.Runtime.InteropServices; | |||
using System.Text; | |||
using Tensorflow; | |||
using static Tensorflow.Python; | |||
namespace TensorFlowNET.Examples | |||
{ | |||
public class MetaGraph : IExample | |||
{ | |||
public int Priority => 100; | |||
public bool Enabled { get; set; } = false; | |||
public string Name => "Meta Graph"; | |||
public bool ImportGraph { get; set; } = true; | |||
public bool Run() | |||
{ | |||
ImportMetaGraph("my-save-dir/"); | |||
return false; | |||
} | |||
private void ImportMetaGraph(string dir) | |||
{ | |||
with(tf.Session(), sess => | |||
{ | |||
var new_saver = tf.train.import_meta_graph(dir + "my-model-10000.meta"); | |||
new_saver.restore(sess, dir + "my-model-10000"); | |||
var labels = tf.constant(0, dtype: tf.int32, shape: new int[] { 100 }, name: "labels"); | |||
var batch_size = tf.size(labels); | |||
var logits = (tf.get_collection("logits") as List<ITensorOrOperation>)[0] as Tensor; | |||
var loss = tf.losses.sparse_softmax_cross_entropy(labels: labels, | |||
logits: logits); | |||
}); | |||
} | |||
public void PrepareData() | |||
{ | |||
} | |||
} | |||
} |
@@ -1,156 +1,156 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
using NumSharp; | |||
using Tensorflow; | |||
using TensorFlowNET.Examples.Utility; | |||
using static Tensorflow.Python; | |||
namespace TensorFlowNET.Examples | |||
{ | |||
/// <summary> | |||
/// Simple vanilla neural net solving the famous XOR problem | |||
/// https://github.com/amygdala/tensorflow-workshop/blob/master/workshop_sections/getting_started/xor/README.md | |||
/// </summary> | |||
public class NeuralNetXor : IExample | |||
{ | |||
public int Priority => 10; | |||
public bool Enabled { get; set; } = true; | |||
public string Name => "NN XOR"; | |||
public bool ImportGraph { get; set; } = false; | |||
public int num_steps = 10000; | |||
private NDArray data; | |||
private (Operation, Tensor, Tensor) make_graph(Tensor features,Tensor labels, int num_hidden = 8) | |||
{ | |||
var stddev = 1 / Math.Sqrt(2); | |||
var hidden_weights = tf.Variable(tf.truncated_normal(new int []{2, num_hidden}, seed:1, stddev: (float) stddev )); | |||
// Shape [4, num_hidden] | |||
var hidden_activations = tf.nn.relu(tf.matmul(features, hidden_weights)); | |||
var output_weights = tf.Variable(tf.truncated_normal( | |||
new[] {num_hidden, 1}, | |||
seed: 17, | |||
stddev: (float) (1 / Math.Sqrt(num_hidden)) | |||
)); | |||
// Shape [4, 1] | |||
var logits = tf.matmul(hidden_activations, output_weights); | |||
// Shape [4] | |||
var predictions = tf.sigmoid(tf.squeeze(logits)); | |||
var loss = tf.reduce_mean(tf.square(predictions - tf.cast(labels, tf.float32)), name:"loss"); | |||
var gs = tf.Variable(0, trainable: false, name: "global_step"); | |||
var train_op = tf.train.GradientDescentOptimizer(0.2f).minimize(loss, global_step: gs); | |||
return (train_op, loss, gs); | |||
} | |||
public bool Run() | |||
{ | |||
PrepareData(); | |||
float loss_value = 0; | |||
if (ImportGraph) | |||
loss_value = RunWithImportedGraph(); | |||
else | |||
loss_value = RunWithBuiltGraph(); | |||
return loss_value < 0.0628; | |||
} | |||
private float RunWithImportedGraph() | |||
{ | |||
var graph = tf.Graph().as_default(); | |||
tf.train.import_meta_graph("graph/xor.meta"); | |||
Tensor features = graph.get_operation_by_name("Placeholder"); | |||
Tensor labels = graph.get_operation_by_name("Placeholder_1"); | |||
Tensor loss = graph.get_operation_by_name("loss"); | |||
Tensor train_op = graph.get_operation_by_name("train_op"); | |||
Tensor global_step = graph.get_operation_by_name("global_step"); | |||
var init = tf.global_variables_initializer(); | |||
float loss_value = 0; | |||
// Start tf session | |||
with(tf.Session(graph), sess => | |||
{ | |||
sess.run(init); | |||
var step = 0; | |||
var y_ = np.array(new int[] { 1, 0, 0, 1 }, dtype: np.int32); | |||
while (step < num_steps) | |||
{ | |||
// original python: | |||
//_, step, loss_value = sess.run( | |||
// [train_op, gs, loss], | |||
// feed_dict={features: xy, labels: y_} | |||
// ) | |||
var result = sess.run(new ITensorOrOperation[] { train_op, global_step, loss }, new FeedItem(features, data), new FeedItem(labels, y_)); | |||
loss_value = result[2]; | |||
step = result[1]; | |||
if (step % 1000 == 0) | |||
Console.WriteLine($"Step {step} loss: {loss_value}"); | |||
} | |||
Console.WriteLine($"Final loss: {loss_value}"); | |||
}); | |||
return loss_value; | |||
} | |||
private float RunWithBuiltGraph() | |||
{ | |||
var graph = tf.Graph().as_default(); | |||
var features = tf.placeholder(tf.float32, new TensorShape(4, 2)); | |||
var labels = tf.placeholder(tf.int32, new TensorShape(4)); | |||
var (train_op, loss, gs) = make_graph(features, labels); | |||
var init = tf.global_variables_initializer(); | |||
float loss_value = 0; | |||
// Start tf session | |||
with(tf.Session(graph), sess => | |||
{ | |||
sess.run(init); | |||
var step = 0; | |||
var y_ = np.array(new int[] { 1, 0, 0, 1 }, dtype: np.int32); | |||
while (step < num_steps) | |||
{ | |||
var result = sess.run(new ITensorOrOperation[] { train_op, gs, loss }, new FeedItem(features, data), new FeedItem(labels, y_)); | |||
loss_value = result[2]; | |||
step = result[1]; | |||
if (step % 1000 == 0) | |||
Console.WriteLine($"Step {step} loss: {loss_value}"); | |||
} | |||
Console.WriteLine($"Final loss: {loss_value}"); | |||
}); | |||
return loss_value; | |||
} | |||
public void PrepareData() | |||
{ | |||
data = new float[,] | |||
{ | |||
{1, 0 }, | |||
{1, 1 }, | |||
{0, 0 }, | |||
{0, 1 } | |||
}; | |||
if (ImportGraph) | |||
{ | |||
// download graph meta data | |||
string url = "https://raw.githubusercontent.com/SciSharp/TensorFlow.NET/master/graph/xor.meta"; | |||
Web.Download(url, "graph", "xor.meta"); | |||
} | |||
} | |||
} | |||
} | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
using NumSharp; | |||
using Tensorflow; | |||
using TensorFlowNET.Examples.Utility; | |||
using static Tensorflow.Python; | |||
namespace TensorFlowNET.Examples | |||
{ | |||
/// <summary> | |||
/// Simple vanilla neural net solving the famous XOR problem | |||
/// https://github.com/amygdala/tensorflow-workshop/blob/master/workshop_sections/getting_started/xor/README.md | |||
/// </summary> | |||
public class NeuralNetXor : IExample | |||
{ | |||
public int Priority => 10; | |||
public bool Enabled { get; set; } = true; | |||
public string Name => "NN XOR"; | |||
public bool ImportGraph { get; set; } = false; | |||
public int num_steps = 10000; | |||
private NDArray data; | |||
private (Operation, Tensor, Tensor) make_graph(Tensor features,Tensor labels, int num_hidden = 8) | |||
{ | |||
var stddev = 1 / Math.Sqrt(2); | |||
var hidden_weights = tf.Variable(tf.truncated_normal(new int []{2, num_hidden}, seed:1, stddev: (float) stddev )); | |||
// Shape [4, num_hidden] | |||
var hidden_activations = tf.nn.relu(tf.matmul(features, hidden_weights)); | |||
var output_weights = tf.Variable(tf.truncated_normal( | |||
new[] {num_hidden, 1}, | |||
seed: 17, | |||
stddev: (float) (1 / Math.Sqrt(num_hidden)) | |||
)); | |||
// Shape [4, 1] | |||
var logits = tf.matmul(hidden_activations, output_weights); | |||
// Shape [4] | |||
var predictions = tf.sigmoid(tf.squeeze(logits)); | |||
var loss = tf.reduce_mean(tf.square(predictions - tf.cast(labels, tf.float32)), name:"loss"); | |||
var gs = tf.Variable(0, trainable: false, name: "global_step"); | |||
var train_op = tf.train.GradientDescentOptimizer(0.2f).minimize(loss, global_step: gs); | |||
return (train_op, loss, gs); | |||
} | |||
public bool Run() | |||
{ | |||
PrepareData(); | |||
float loss_value = 0; | |||
if (ImportGraph) | |||
loss_value = RunWithImportedGraph(); | |||
else | |||
loss_value = RunWithBuiltGraph(); | |||
return loss_value < 0.0628; | |||
} | |||
private float RunWithImportedGraph() | |||
{ | |||
var graph = tf.Graph().as_default(); | |||
tf.train.import_meta_graph("graph/xor.meta"); | |||
Tensor features = graph.get_operation_by_name("Placeholder"); | |||
Tensor labels = graph.get_operation_by_name("Placeholder_1"); | |||
Tensor loss = graph.get_operation_by_name("loss"); | |||
Tensor train_op = graph.get_operation_by_name("train_op"); | |||
Tensor global_step = graph.get_operation_by_name("global_step"); | |||
var init = tf.global_variables_initializer(); | |||
float loss_value = 0; | |||
// Start tf session | |||
with(tf.Session(graph), sess => | |||
{ | |||
sess.run(init); | |||
var step = 0; | |||
var y_ = np.array(new int[] { 1, 0, 0, 1 }, dtype: np.int32); | |||
while (step < num_steps) | |||
{ | |||
// original python: | |||
//_, step, loss_value = sess.run( | |||
// [train_op, gs, loss], | |||
// feed_dict={features: xy, labels: y_} | |||
// ) | |||
var result = sess.run(new ITensorOrOperation[] { train_op, global_step, loss }, new FeedItem(features, data), new FeedItem(labels, y_)); | |||
loss_value = result[2]; | |||
step = result[1]; | |||
if (step % 1000 == 0) | |||
Console.WriteLine($"Step {step} loss: {loss_value}"); | |||
} | |||
Console.WriteLine($"Final loss: {loss_value}"); | |||
}); | |||
return loss_value; | |||
} | |||
private float RunWithBuiltGraph() | |||
{ | |||
var graph = tf.Graph().as_default(); | |||
var features = tf.placeholder(tf.float32, new TensorShape(4, 2)); | |||
var labels = tf.placeholder(tf.int32, new TensorShape(4)); | |||
var (train_op, loss, gs) = make_graph(features, labels); | |||
var init = tf.global_variables_initializer(); | |||
float loss_value = 0; | |||
// Start tf session | |||
with(tf.Session(graph), sess => | |||
{ | |||
sess.run(init); | |||
var step = 0; | |||
var y_ = np.array(new int[] { 1, 0, 0, 1 }, dtype: np.int32); | |||
while (step < num_steps) | |||
{ | |||
var result = sess.run(new ITensorOrOperation[] { train_op, gs, loss }, new FeedItem(features, data), new FeedItem(labels, y_)); | |||
loss_value = result[2]; | |||
step = result[1]; | |||
if (step % 1000 == 0) | |||
Console.WriteLine($"Step {step} loss: {loss_value}"); | |||
} | |||
Console.WriteLine($"Final loss: {loss_value}"); | |||
}); | |||
return loss_value; | |||
} | |||
public void PrepareData() | |||
{ | |||
data = new float[,] | |||
{ | |||
{1, 0 }, | |||
{1, 1 }, | |||
{0, 0 }, | |||
{0, 1 } | |||
}; | |||
if (ImportGraph) | |||
{ | |||
// download graph meta data | |||
string url = "https://raw.githubusercontent.com/SciSharp/TensorFlow.NET/master/graph/xor.meta"; | |||
Web.Download(url, "graph", "xor.meta"); | |||
} | |||
} | |||
} | |||
} |
@@ -64,6 +64,7 @@ namespace TensorFlowNET.Examples | |||
disabled.ForEach(x => Console.WriteLine($"{x} is Disabled!", Color.Tan)); | |||
errors.ForEach(x => Console.WriteLine($"{x} is Failed!", Color.Red)); | |||
Console.Write("Please [Enter] to quit."); | |||
Console.ReadLine(); | |||
} | |||
} | |||
@@ -1,94 +0,0 @@ | |||
using NumSharp; | |||
using System; | |||
using System.Collections.Generic; | |||
using System.IO; | |||
using System.Linq; | |||
using System.Text; | |||
using System.Text.RegularExpressions; | |||
namespace TensorFlowNET.Examples.CnnTextClassification | |||
{ | |||
public class DataHelpers | |||
{ | |||
private const string TRAIN_PATH = "text_classification/dbpedia_csv/train.csv"; | |||
private const string TEST_PATH = "text_classification/dbpedia_csv/test.csv"; | |||
public static (int[][], int[], int) build_char_dataset(string step, string model, int document_max_len, int? limit = null) | |||
{ | |||
if (model != "vd_cnn") | |||
throw new NotImplementedException(model); | |||
string alphabet = "abcdefghijklmnopqrstuvwxyz0123456789-,;.!?:’'\"/|_#$%ˆ&*˜‘+=<>()[]{} "; | |||
/*if (step == "train") | |||
df = pd.read_csv(TRAIN_PATH, names =["class", "title", "content"]);*/ | |||
var char_dict = new Dictionary<string, int>(); | |||
char_dict["<pad>"] = 0; | |||
char_dict["<unk>"] = 1; | |||
foreach (char c in alphabet) | |||
char_dict[c.ToString()] = char_dict.Count; | |||
var contents = File.ReadAllLines(TRAIN_PATH); | |||
var size = limit == null ? contents.Length : limit.Value; | |||
var x = new int[size][]; | |||
var y = new int[size]; | |||
for (int i = 0; i < size; i++) | |||
{ | |||
string[] parts = contents[i].ToLower().Split(",\"").ToArray(); | |||
string content = parts[2]; | |||
content = content.Substring(0, content.Length - 1); | |||
x[i] = new int[document_max_len]; | |||
for (int j = 0; j < document_max_len; j++) | |||
{ | |||
if (j >= content.Length) | |||
x[i][j] = char_dict["<pad>"]; | |||
else | |||
x[i][j] = char_dict.ContainsKey(content[j].ToString()) ? char_dict[content[j].ToString()] : char_dict["<unk>"]; | |||
} | |||
y[i] = int.Parse(parts[0]); | |||
} | |||
return (x, y, alphabet.Length + 2); | |||
} | |||
/// <summary> | |||
/// Loads MR polarity data from files, splits the data into words and generates labels. | |||
/// Returns split sentences and labels. | |||
/// </summary> | |||
/// <param name="positive_data_file"></param> | |||
/// <param name="negative_data_file"></param> | |||
/// <returns></returns> | |||
public static (string[], NDArray) load_data_and_labels(string positive_data_file, string negative_data_file) | |||
{ | |||
Directory.CreateDirectory("CnnTextClassification"); | |||
Utility.Web.Download(positive_data_file, "CnnTextClassification", "rt -polarity.pos"); | |||
Utility.Web.Download(negative_data_file, "CnnTextClassification", "rt-polarity.neg"); | |||
// Load data from files | |||
var positive_examples = File.ReadAllLines("CnnTextClassification/rt-polarity.pos") | |||
.Select(x => x.Trim()) | |||
.ToArray(); | |||
var negative_examples = File.ReadAllLines("CnnTextClassification/rt-polarity.neg") | |||
.Select(x => x.Trim()) | |||
.ToArray(); | |||
var x_text = new List<string>(); | |||
x_text.AddRange(positive_examples); | |||
x_text.AddRange(negative_examples); | |||
x_text = x_text.Select(x => clean_str(x)).ToList(); | |||
var positive_labels = positive_examples.Select(x => new int[2] { 0, 1 }).ToArray(); | |||
var negative_labels = negative_examples.Select(x => new int[2] { 1, 0 }).ToArray(); | |||
var y = np.concatenate(new int[][][] { positive_labels, negative_labels }); | |||
return (x_text.ToArray(), y); | |||
} | |||
private static string clean_str(string str) | |||
{ | |||
str = Regex.Replace(str, @"[^A-Za-z0-9(),!?\'\`]", " "); | |||
str = Regex.Replace(str, @"\'s", " \'s"); | |||
return str; | |||
} | |||
} | |||
} |
@@ -1,71 +0,0 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.IO; | |||
using System.Text; | |||
using Tensorflow; | |||
using static Tensorflow.Python; | |||
namespace TensorFlowNET.Examples | |||
{ | |||
/// <summary> | |||
/// Bidirectional LSTM-CRF Models for Sequence Tagging | |||
/// https://github.com/guillaumegenthial/tf_ner/tree/master/models/lstm_crf | |||
/// </summary> | |||
public class BiLstmCrfNer : IExample | |||
{ | |||
public int Priority => 101; | |||
public bool Enabled { get; set; } = true; | |||
public bool ImportGraph { get; set; } = false; | |||
public string Name => "bi-LSTM + CRF NER"; | |||
HyperParams @params = new HyperParams(); | |||
public bool Run() | |||
{ | |||
PrepareData(); | |||
return false; | |||
} | |||
public void PrepareData() | |||
{ | |||
if (!Directory.Exists(HyperParams.DATADIR)) | |||
Directory.CreateDirectory(HyperParams.DATADIR); | |||
if (!Directory.Exists(@params.RESULTDIR)) | |||
Directory.CreateDirectory(@params.RESULTDIR); | |||
if (!Directory.Exists(@params.MODELDIR)) | |||
Directory.CreateDirectory(@params.MODELDIR); | |||
if (!Directory.Exists(@params.EVALDIR)) | |||
Directory.CreateDirectory(@params.EVALDIR); | |||
} | |||
private class HyperParams | |||
{ | |||
public const string DATADIR = "BiLstmCrfNer"; | |||
public string RESULTDIR = Path.Combine(DATADIR, "results"); | |||
public string MODELDIR; | |||
public string EVALDIR; | |||
public int dim = 300; | |||
public float dropout = 0.5f; | |||
public int num_oov_buckets = 1; | |||
public int epochs = 25; | |||
public int batch_size = 20; | |||
public int buffer = 15000; | |||
public int lstm_size = 100; | |||
public string words = Path.Combine(DATADIR, "vocab.words.txt"); | |||
public string chars = Path.Combine(DATADIR, "vocab.chars.txt"); | |||
public string tags = Path.Combine(DATADIR, "vocab.tags.txt"); | |||
public string glove = Path.Combine(DATADIR, "glove.npz"); | |||
public HyperParams() | |||
{ | |||
MODELDIR = Path.Combine(RESULTDIR, "model"); | |||
EVALDIR = Path.Combine(MODELDIR, "eval"); | |||
} | |||
} | |||
} | |||
} |
@@ -1,179 +0,0 @@ | |||
using System; | |||
using System.Collections; | |||
using System.Collections.Generic; | |||
using System.IO; | |||
using System.Linq; | |||
using System.Text; | |||
using NumSharp; | |||
using Tensorflow; | |||
using Tensorflow.Keras.Engine; | |||
using TensorFlowNET.Examples.Text.cnn_models; | |||
using TensorFlowNET.Examples.TextClassification; | |||
using TensorFlowNET.Examples.Utility; | |||
using static Tensorflow.Python; | |||
namespace TensorFlowNET.Examples.CnnTextClassification | |||
{ | |||
/// <summary> | |||
/// https://github.com/dongjun-Lee/text-classification-models-tf | |||
/// </summary> | |||
public class TextClassificationTrain : IExample | |||
{ | |||
public int Priority => 100; | |||
public bool Enabled { get; set; } = false; | |||
public string Name => "Text Classification"; | |||
public int? DataLimit = null; | |||
public bool ImportGraph { get; set; } = true; | |||
private string dataDir = "text_classification"; | |||
private string dataFileName = "dbpedia_csv.tar.gz"; | |||
public string model_name = "vd_cnn"; // word_cnn | char_cnn | vd_cnn | word_rnn | att_rnn | rcnn | |||
private const int CHAR_MAX_LEN = 1014; | |||
private const int NUM_CLASS = 2; | |||
private const int BATCH_SIZE = 64; | |||
private const int NUM_EPOCHS = 10; | |||
protected float loss_value = 0; | |||
public bool Run() | |||
{ | |||
PrepareData(); | |||
return with(tf.Session(), sess => | |||
{ | |||
if (ImportGraph) | |||
return RunWithImportedGraph(sess); | |||
else | |||
return RunWithBuiltGraph(sess); | |||
}); | |||
} | |||
protected virtual bool RunWithImportedGraph(Session sess) | |||
{ | |||
var graph = tf.Graph().as_default(); | |||
Console.WriteLine("Building dataset..."); | |||
var (x, y, alphabet_size) = DataHelpers.build_char_dataset("train", model_name, CHAR_MAX_LEN, DataLimit); | |||
var (train_x, valid_x, train_y, valid_y) = train_test_split(x, y, test_size: 0.15f); | |||
var meta_file = model_name + "_untrained.meta"; | |||
tf.train.import_meta_graph(Path.Join("graph", meta_file)); | |||
//sess.run(tf.global_variables_initializer()); // not necessary here, has already been done before meta graph export | |||
var train_batches = batch_iter(train_x, train_y, BATCH_SIZE, NUM_EPOCHS); | |||
var num_batches_per_epoch = (len(train_x) - 1); // BATCH_SIZE + 1 | |||
double max_accuracy = 0; | |||
Tensor is_training = graph.get_operation_by_name("is_training"); | |||
Tensor model_x = graph.get_operation_by_name("x"); | |||
Tensor model_y = graph.get_operation_by_name("y"); | |||
Tensor loss = graph.get_operation_by_name("Variable"); | |||
Tensor accuracy = graph.get_operation_by_name("accuracy/accuracy"); | |||
foreach (var (x_batch, y_batch) in train_batches) | |||
{ | |||
var train_feed_dict = new Hashtable | |||
{ | |||
[model_x] = x_batch, | |||
[model_y] = y_batch, | |||
[is_training] = true, | |||
}; | |||
//_, step, loss = sess.run([model.optimizer, model.global_step, model.loss], feed_dict = train_feed_dict) | |||
} | |||
return false; | |||
} | |||
protected virtual bool RunWithBuiltGraph(Session session) | |||
{ | |||
Console.WriteLine("Building dataset..."); | |||
var (x, y, alphabet_size) = DataHelpers.build_char_dataset("train", model_name, CHAR_MAX_LEN, DataLimit); | |||
var (train_x, valid_x, train_y, valid_y) = train_test_split(x, y, test_size: 0.15f); | |||
ITextClassificationModel model = null; | |||
switch (model_name) // word_cnn | char_cnn | vd_cnn | word_rnn | att_rnn | rcnn | |||
{ | |||
case "word_cnn": | |||
case "char_cnn": | |||
case "word_rnn": | |||
case "att_rnn": | |||
case "rcnn": | |||
throw new NotImplementedException(); | |||
break; | |||
case "vd_cnn": | |||
model=new VdCnn(alphabet_size, CHAR_MAX_LEN, NUM_CLASS); | |||
break; | |||
} | |||
// todo train the model | |||
return false; | |||
} | |||
private (int[][], int[][], int[], int[]) train_test_split(int[][] x, int[] y, float test_size = 0.3f) | |||
{ | |||
int len = x.Length; | |||
int classes = y.Distinct().Count(); | |||
int samples = len / classes; | |||
int train_size = int.Parse((samples * (1 - test_size)).ToString()); | |||
var train_x = new List<int[]>(); | |||
var valid_x = new List<int[]>(); | |||
var train_y = new List<int>(); | |||
var valid_y = new List<int>(); | |||
for (int i = 0; i < classes; i++) | |||
{ | |||
for (int j = 0; j < samples; j++) | |||
{ | |||
int idx = i * samples + j; | |||
if (idx < train_size + samples * i) | |||
{ | |||
train_x.Add(x[idx]); | |||
train_y.Add(y[idx]); | |||
} | |||
else | |||
{ | |||
valid_x.Add(x[idx]); | |||
valid_y.Add(y[idx]); | |||
} | |||
} | |||
} | |||
return (train_x.ToArray(), valid_x.ToArray(), train_y.ToArray(), valid_y.ToArray()); | |||
} | |||
private IEnumerable<(NDArray, NDArray)> batch_iter(int[][] raw_inputs, int[] raw_outputs, int batch_size, int num_epochs) | |||
{ | |||
var inputs = np.array(raw_inputs); | |||
var outputs = np.array(raw_outputs); | |||
var num_batches_per_epoch = (len(inputs) - 1); // batch_size + 1 | |||
foreach (var epoch in range(num_epochs)) | |||
{ | |||
foreach (var batch_num in range(num_batches_per_epoch)) | |||
{ | |||
var start_index = batch_num * batch_size; | |||
var end_index = Math.Min((batch_num + 1) * batch_size, len(inputs)); | |||
yield return (inputs[$"{start_index}:{end_index}"], outputs[$"{start_index}:{end_index}"]); | |||
} | |||
} | |||
} | |||
public void PrepareData() | |||
{ | |||
string url = "https://github.com/le-scientifique/torchDatasets/raw/master/dbpedia_csv.tar.gz"; | |||
Web.Download(url, dataDir, dataFileName); | |||
Compress.ExtractTGZ(Path.Join(dataDir, dataFileName), dataDir); | |||
if (ImportGraph) | |||
{ | |||
// download graph meta data | |||
var meta_file = model_name + "_untrained.meta"; | |||
url = "https://raw.githubusercontent.com/SciSharp/TensorFlow.NET/master/graph/" + meta_file; | |||
Web.Download(url, "graph", meta_file); | |||
} | |||
} | |||
} | |||
} |
@@ -0,0 +1,163 @@ | |||
using NumSharp; | |||
using System; | |||
using System.Collections.Generic; | |||
using System.IO; | |||
using System.Linq; | |||
using System.Text; | |||
using System.Text.RegularExpressions; | |||
using TensorFlowNET.Examples.Utility; | |||
namespace TensorFlowNET.Examples | |||
{ | |||
public class DataHelpers | |||
{ | |||
public static (int[][], int[], int) build_char_dataset(string path, string model, int document_max_len, int? limit = null, bool shuffle=true) | |||
{ | |||
if (model != "vd_cnn") | |||
throw new NotImplementedException(model); | |||
string alphabet = "abcdefghijklmnopqrstuvwxyz0123456789-,;.!?:’'\"/|_#$%ˆ&*˜‘+=<>()[]{} "; | |||
/*if (step == "train") | |||
df = pd.read_csv(TRAIN_PATH, names =["class", "title", "content"]);*/ | |||
var char_dict = new Dictionary<string, int>(); | |||
char_dict["<pad>"] = 0; | |||
char_dict["<unk>"] = 1; | |||
foreach (char c in alphabet) | |||
char_dict[c.ToString()] = char_dict.Count; | |||
var contents = File.ReadAllLines(path); | |||
if (shuffle) | |||
new Random(17).Shuffle(contents); | |||
//File.WriteAllLines("text_classification/dbpedia_csv/train_6400.csv", contents.Take(6400)); | |||
var size = limit == null ? contents.Length : limit.Value; | |||
var x = new int[size][]; | |||
var y = new int[size]; | |||
var tenth = size / 10; | |||
var percent = 0; | |||
for (int i = 0; i < size; i++) | |||
{ | |||
if ((i + 1) % tenth == 0) | |||
{ | |||
percent += 10; | |||
Console.WriteLine($"\t{percent}%"); | |||
} | |||
string[] parts = contents[i].ToLower().Split(",\"").ToArray(); | |||
string content = parts[2]; | |||
content = content.Substring(0, content.Length - 1); | |||
var a = new int[document_max_len]; | |||
for (int j = 0; j < document_max_len; j++) | |||
{ | |||
if (j >= content.Length) | |||
a[j] = char_dict["<pad>"]; | |||
else | |||
a[j] = char_dict.ContainsKey(content[j].ToString()) ? char_dict[content[j].ToString()] : char_dict["<unk>"]; | |||
} | |||
x[i] = a; | |||
y[i] = int.Parse(parts[0]); | |||
} | |||
return (x, y, alphabet.Length + 2); | |||
} | |||
/// <summary> | |||
/// Loads MR polarity data from files, splits the data into words and generates labels. | |||
/// Returns split sentences and labels. | |||
/// </summary> | |||
/// <param name="positive_data_file"></param> | |||
/// <param name="negative_data_file"></param> | |||
/// <returns></returns> | |||
public static (string[], NDArray) load_data_and_labels(string positive_data_file, string negative_data_file) | |||
{ | |||
Directory.CreateDirectory("CnnTextClassification"); | |||
Utility.Web.Download(positive_data_file, "CnnTextClassification", "rt -polarity.pos"); | |||
Utility.Web.Download(negative_data_file, "CnnTextClassification", "rt-polarity.neg"); | |||
// Load data from files | |||
var positive_examples = File.ReadAllLines("CnnTextClassification/rt-polarity.pos") | |||
.Select(x => x.Trim()) | |||
.ToArray(); | |||
var negative_examples = File.ReadAllLines("CnnTextClassification/rt-polarity.neg") | |||
.Select(x => x.Trim()) | |||
.ToArray(); | |||
var x_text = new List<string>(); | |||
x_text.AddRange(positive_examples); | |||
x_text.AddRange(negative_examples); | |||
x_text = x_text.Select(x => clean_str(x)).ToList(); | |||
var positive_labels = positive_examples.Select(x => new int[2] { 0, 1 }).ToArray(); | |||
var negative_labels = negative_examples.Select(x => new int[2] { 1, 0 }).ToArray(); | |||
var y = np.concatenate(new int[][][] { positive_labels, negative_labels }); | |||
return (x_text.ToArray(), y); | |||
} | |||
private static string clean_str(string str) | |||
{ | |||
str = Regex.Replace(str, @"[^A-Za-z0-9(),!?\'\`]", " "); | |||
str = Regex.Replace(str, @"\'s", " \'s"); | |||
return str; | |||
} | |||
/// <summary> | |||
/// Padding | |||
/// </summary> | |||
/// <param name="sequences"></param> | |||
/// <param name="pad_tok">the char to pad with</param> | |||
/// <returns>a list of list where each sublist has same length</returns> | |||
public static (int[][], int[]) pad_sequences(int[][] sequences, int pad_tok = 0) | |||
{ | |||
int max_length = sequences.Select(x => x.Length).Max(); | |||
return _pad_sequences(sequences, pad_tok, max_length); | |||
} | |||
public static (int[][][], int[][]) pad_sequences(int[][][] sequences, int pad_tok = 0) | |||
{ | |||
int max_length_word = sequences.Select(x => x.Select(w => w.Length).Max()).Max(); | |||
int[][][] sequence_padded; | |||
var sequence_length = new int[sequences.Length][]; | |||
for (int i = 0; i < sequences.Length; i++) | |||
{ | |||
// all words are same length now | |||
var (sp, sl) = _pad_sequences(sequences[i], pad_tok, max_length_word); | |||
sequence_length[i] = sl; | |||
} | |||
int max_length_sentence = sequences.Select(x => x.Length).Max(); | |||
(sequence_padded, _) = _pad_sequences(sequences, np.repeat(pad_tok, max_length_word).Data<int>(), max_length_sentence); | |||
(sequence_length, _) = _pad_sequences(sequence_length, 0, max_length_sentence); | |||
return (sequence_padded, sequence_length); | |||
} | |||
private static (int[][], int[]) _pad_sequences(int[][] sequences, int pad_tok, int max_length) | |||
{ | |||
var sequence_length = new int[sequences.Length]; | |||
for (int i = 0; i < sequences.Length; i++) | |||
{ | |||
sequence_length[i] = sequences[i].Length; | |||
Array.Resize(ref sequences[i], max_length); | |||
} | |||
return (sequences, sequence_length); | |||
} | |||
private static (int[][][], int[]) _pad_sequences(int[][][] sequences, int[] pad_tok, int max_length) | |||
{ | |||
var sequence_length = new int[sequences.Length]; | |||
for (int i = 0; i < sequences.Length; i++) | |||
{ | |||
sequence_length[i] = sequences[i].Length; | |||
Array.Resize(ref sequences[i], max_length); | |||
for (int j = 0; j < max_length - sequence_length[i]; j++) | |||
{ | |||
sequences[i][max_length - j - 1] = new int[pad_tok.Length]; | |||
Array.Copy(pad_tok, sequences[i][max_length - j - 1], pad_tok.Length); | |||
} | |||
} | |||
return (sequences, sequence_length); | |||
} | |||
} | |||
} |
@@ -0,0 +1,39 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.IO; | |||
using System.Text; | |||
using Tensorflow; | |||
using Tensorflow.Estimator; | |||
using static Tensorflow.Python; | |||
namespace TensorFlowNET.Examples | |||
{ | |||
/// <summary> | |||
/// Bidirectional LSTM-CRF Models for Sequence Tagging | |||
/// https://github.com/guillaumegenthial/tf_ner/tree/master/models/lstm_crf | |||
/// </summary> | |||
public class BiLstmCrfNer : IExample | |||
{ | |||
public int Priority => 101; | |||
public bool Enabled { get; set; } = true; | |||
public bool ImportGraph { get; set; } = false; | |||
public string Name => "bi-LSTM + CRF NER"; | |||
public bool Run() | |||
{ | |||
PrepareData(); | |||
return false; | |||
} | |||
public void PrepareData() | |||
{ | |||
var hp = new HyperParams("BiLstmCrfNer"); | |||
hp.filepath_words = Path.Combine(hp.data_root_dir, "vocab.words.txt"); | |||
hp.filepath_chars = Path.Combine(hp.data_root_dir, "vocab.chars.txt"); | |||
hp.filepath_tags = Path.Combine(hp.data_root_dir, "vocab.tags.txt"); | |||
hp.filepath_glove = Path.Combine(hp.data_root_dir, "glove.npz"); | |||
} | |||
} | |||
} |
@@ -0,0 +1,212 @@ | |||
using NumSharp; | |||
using System; | |||
using System.Collections.Generic; | |||
using System.IO; | |||
using System.Linq; | |||
using System.Text; | |||
using Tensorflow; | |||
using Tensorflow.Estimator; | |||
using TensorFlowNET.Examples.Utility; | |||
using static Tensorflow.Python; | |||
using static TensorFlowNET.Examples.DataHelpers; | |||
namespace TensorFlowNET.Examples.Text.NER | |||
{ | |||
/// <summary> | |||
/// A NER model using Tensorflow (LSTM + CRF + chars embeddings). | |||
/// State-of-the-art performance (F1 score between 90 and 91). | |||
/// | |||
/// https://github.com/guillaumegenthial/sequence_tagging | |||
/// </summary> | |||
public class LstmCrfNer : IExample | |||
{ | |||
public int Priority => 14; | |||
public bool Enabled { get; set; } = true; | |||
public bool ImportGraph { get; set; } = true; | |||
public string Name => "LSTM + CRF NER"; | |||
HyperParams hp; | |||
int nwords, nchars, ntags; | |||
CoNLLDataset dev, train; | |||
Tensor word_ids_tensor; | |||
Tensor sequence_lengths_tensor; | |||
Tensor char_ids_tensor; | |||
Tensor word_lengths_tensor; | |||
Tensor labels_tensor; | |||
Tensor dropout_tensor; | |||
Tensor lr_tensor; | |||
Operation train_op; | |||
Tensor loss; | |||
Tensor merged; | |||
public bool Run() | |||
{ | |||
PrepareData(); | |||
var graph = tf.Graph().as_default(); | |||
tf.train.import_meta_graph("graph/lstm_crf_ner.meta"); | |||
float loss_value = 0f; | |||
//add_summary(); | |||
word_ids_tensor = graph.OperationByName("word_ids"); | |||
sequence_lengths_tensor = graph.OperationByName("sequence_lengths"); | |||
char_ids_tensor = graph.OperationByName("char_ids"); | |||
word_lengths_tensor = graph.OperationByName("word_lengths"); | |||
labels_tensor = graph.OperationByName("labels"); | |||
dropout_tensor = graph.OperationByName("dropout"); | |||
lr_tensor = graph.OperationByName("lr"); | |||
train_op = graph.OperationByName("train_step/Adam"); | |||
loss = graph.OperationByName("Mean"); | |||
//merged = graph.OperationByName("Merge/MergeSummary"); | |||
var init = tf.global_variables_initializer(); | |||
with(tf.Session(), sess => | |||
{ | |||
sess.run(init); | |||
foreach (var epoch in range(hp.epochs)) | |||
{ | |||
Console.Write($"Epoch {epoch + 1} out of {hp.epochs}, "); | |||
loss_value = run_epoch(sess, train, dev, epoch); | |||
print($"train loss: {loss_value}"); | |||
} | |||
}); | |||
return loss_value < 0.1; | |||
} | |||
private float run_epoch(Session sess, CoNLLDataset train, CoNLLDataset dev, int epoch) | |||
{ | |||
NDArray results = null; | |||
// iterate over dataset | |||
var batches = minibatches(train, hp.batch_size); | |||
foreach (var(words, labels) in batches) | |||
{ | |||
var (fd, _) = get_feed_dict(words, labels, hp.lr, hp.dropout); | |||
results = sess.run(new ITensorOrOperation[] { train_op, loss }, feed_dict: fd); | |||
} | |||
return results[1]; | |||
} | |||
private IEnumerable<((int[][], int[])[], int[][])> minibatches(CoNLLDataset data, int minibatch_size) | |||
{ | |||
var x_batch = new List<(int[][], int[])>(); | |||
var y_batch = new List<int[]>(); | |||
foreach(var (x, y) in data.GetItems()) | |||
{ | |||
if (len(y_batch) == minibatch_size) | |||
{ | |||
yield return (x_batch.ToArray(), y_batch.ToArray()); | |||
x_batch.Clear(); | |||
y_batch.Clear(); | |||
} | |||
var x3 = (x.Select(x1 => x1.Item1).ToArray(), x.Select(x2 => x2.Item2).ToArray()); | |||
x_batch.Add(x3); | |||
y_batch.Add(y); | |||
} | |||
if (len(y_batch) > 0) | |||
yield return (x_batch.ToArray(), y_batch.ToArray()); | |||
} | |||
/// <summary> | |||
/// Given some data, pad it and build a feed dictionary | |||
/// </summary> | |||
/// <param name="words"> | |||
/// list of sentences. A sentence is a list of ids of a list of | |||
/// words. A word is a list of ids | |||
/// </param> | |||
/// <param name="labels">list of ids</param> | |||
/// <param name="lr">learning rate</param> | |||
/// <param name="dropout">keep prob</param> | |||
private (FeedItem[], int[]) get_feed_dict((int[][], int[])[] words, int[][] labels, float lr = 0f, float dropout = 0f) | |||
{ | |||
int[] sequence_lengths; | |||
int[][] word_lengths; | |||
int[][] word_ids; | |||
int[][][] char_ids; | |||
if (true) // use_chars | |||
{ | |||
(char_ids, word_ids) = (words.Select(x => x.Item1).ToArray(), words.Select(x => x.Item2).ToArray()); | |||
(word_ids, sequence_lengths) = pad_sequences(word_ids, pad_tok: 0); | |||
(char_ids, word_lengths) = pad_sequences(char_ids, pad_tok: 0); | |||
} | |||
// build feed dictionary | |||
var feeds = new List<FeedItem>(); | |||
feeds.Add(new FeedItem(word_ids_tensor, np.array(word_ids))); | |||
feeds.Add(new FeedItem(sequence_lengths_tensor, np.array(sequence_lengths))); | |||
if(true) // use_chars | |||
{ | |||
feeds.Add(new FeedItem(char_ids_tensor, np.array(char_ids))); | |||
feeds.Add(new FeedItem(word_lengths_tensor, np.array(word_lengths))); | |||
} | |||
(labels, _) = pad_sequences(labels, 0); | |||
feeds.Add(new FeedItem(labels_tensor, np.array(labels))); | |||
feeds.Add(new FeedItem(lr_tensor, lr)); | |||
feeds.Add(new FeedItem(dropout_tensor, dropout)); | |||
return (feeds.ToArray(), sequence_lengths); | |||
} | |||
public void PrepareData() | |||
{ | |||
hp = new HyperParams("LstmCrfNer") | |||
{ | |||
epochs = 50, | |||
dropout = 0.5f, | |||
batch_size = 20, | |||
lr_method = "adam", | |||
lr = 0.001f, | |||
lr_decay = 0.9f, | |||
clip = false, | |||
epoch_no_imprv = 3, | |||
hidden_size_char = 100, | |||
hidden_size_lstm = 300 | |||
}; | |||
hp.filepath_dev = hp.filepath_test = hp.filepath_train = Path.Combine(hp.data_root_dir, "test.txt"); | |||
// Loads vocabulary, processing functions and embeddings | |||
hp.filepath_words = Path.Combine(hp.data_root_dir, "words.txt"); | |||
hp.filepath_tags = Path.Combine(hp.data_root_dir, "tags.txt"); | |||
hp.filepath_chars = Path.Combine(hp.data_root_dir, "chars.txt"); | |||
string url = "https://raw.githubusercontent.com/SciSharp/TensorFlow.NET/master/data/lstm_crf_ner.zip"; | |||
Web.Download(url, hp.data_root_dir, "lstm_crf_ner.zip"); | |||
Compress.UnZip(Path.Combine(hp.data_root_dir, "lstm_crf_ner.zip"), hp.data_root_dir); | |||
// 1. vocabulary | |||
/*vocab_tags = load_vocab(hp.filepath_tags); | |||
nwords = vocab_words.Count; | |||
nchars = vocab_chars.Count; | |||
ntags = vocab_tags.Count;*/ | |||
// 2. get processing functions that map str -> id | |||
dev = new CoNLLDataset(hp.filepath_dev, hp); | |||
train = new CoNLLDataset(hp.filepath_train, hp); | |||
// download graph meta data | |||
var meta_file = "lstm_crf_ner.meta"; | |||
var meta_path = Path.Combine("graph", meta_file); | |||
url = "https://raw.githubusercontent.com/SciSharp/TensorFlow.NET/master/graph/" + meta_file; | |||
Web.Download(url, "graph", meta_file); | |||
} | |||
} | |||
} |
@@ -0,0 +1,289 @@ | |||
using System; | |||
using System.Collections; | |||
using System.Collections.Generic; | |||
using System.Diagnostics; | |||
using System.IO; | |||
using System.Linq; | |||
using System.Text; | |||
using NumSharp; | |||
using Tensorflow; | |||
using Tensorflow.Keras.Engine; | |||
using Tensorflow.Sessions; | |||
using TensorFlowNET.Examples.Text.cnn_models; | |||
using TensorFlowNET.Examples.TextClassification; | |||
using TensorFlowNET.Examples.Utility; | |||
using static Tensorflow.Python; | |||
namespace TensorFlowNET.Examples.CnnTextClassification | |||
{ | |||
/// <summary> | |||
/// https://github.com/dongjun-Lee/text-classification-models-tf | |||
/// </summary> | |||
public class TextClassificationTrain : IExample | |||
{ | |||
public int Priority => 100; | |||
public bool Enabled { get; set; } = false; | |||
public string Name => "Text Classification"; | |||
public int? DataLimit = null; | |||
public bool ImportGraph { get; set; } = true; | |||
public bool UseSubset = true; // <----- set this true to use a limited subset of dbpedia | |||
private string dataDir = "text_classification"; | |||
private string dataFileName = "dbpedia_csv.tar.gz"; | |||
public string model_name = "vd_cnn"; // word_cnn | char_cnn | vd_cnn | word_rnn | att_rnn | rcnn | |||
private const string TRAIN_PATH = "text_classification/dbpedia_csv/train.csv"; | |||
private const string SUBSET_PATH = "text_classification/dbpedia_csv/dbpedia_6400.csv"; | |||
private const string TEST_PATH = "text_classification/dbpedia_csv/test.csv"; | |||
private const int CHAR_MAX_LEN = 1014; | |||
private const int WORD_MAX_LEN = 1014; | |||
private const int NUM_CLASS = 14; | |||
private const int BATCH_SIZE = 64; | |||
private const int NUM_EPOCHS = 10; | |||
protected float loss_value = 0; | |||
public bool Run() | |||
{ | |||
PrepareData(); | |||
var graph = tf.Graph().as_default(); | |||
return with(tf.Session(graph), sess => | |||
{ | |||
if (ImportGraph) | |||
return RunWithImportedGraph(sess, graph); | |||
else | |||
return RunWithBuiltGraph(sess, graph); | |||
}); | |||
} | |||
protected virtual bool RunWithImportedGraph(Session sess, Graph graph) | |||
{ | |||
var stopwatch = Stopwatch.StartNew(); | |||
Console.WriteLine("Building dataset..."); | |||
var path = UseSubset ? SUBSET_PATH : TRAIN_PATH; | |||
var (x, y, alphabet_size) = DataHelpers.build_char_dataset(path, model_name, CHAR_MAX_LEN, DataLimit = null, shuffle:!UseSubset); | |||
Console.WriteLine("\tDONE "); | |||
var (train_x, valid_x, train_y, valid_y) = train_test_split(x, y, test_size: 0.15f); | |||
Console.WriteLine("Training set size: " + train_x.len); | |||
Console.WriteLine("Test set size: " + valid_x.len); | |||
Console.WriteLine("Import graph..."); | |||
var meta_file = model_name + ".meta"; | |||
tf.train.import_meta_graph(Path.Join("graph", meta_file)); | |||
Console.WriteLine("\tDONE " + stopwatch.Elapsed); | |||
sess.run(tf.global_variables_initializer()); | |||
var train_batches = batch_iter(train_x, train_y, BATCH_SIZE, NUM_EPOCHS); | |||
var num_batches_per_epoch = (len(train_x) - 1) / BATCH_SIZE + 1; | |||
double max_accuracy = 0; | |||
Tensor is_training = graph.get_tensor_by_name("is_training:0"); | |||
Tensor model_x = graph.get_tensor_by_name("x:0"); | |||
Tensor model_y = graph.get_tensor_by_name("y:0"); | |||
Tensor loss = graph.get_tensor_by_name("loss/value:0"); | |||
Tensor optimizer = graph.get_tensor_by_name("loss/optimizer:0"); | |||
Tensor global_step = graph.get_tensor_by_name("global_step:0"); | |||
Tensor accuracy = graph.get_tensor_by_name("accuracy/value:0"); | |||
stopwatch = Stopwatch.StartNew(); | |||
int i = 0; | |||
foreach (var (x_batch, y_batch, total) in train_batches) | |||
{ | |||
i++; | |||
var train_feed_dict = new FeedDict | |||
{ | |||
[model_x] = x_batch, | |||
[model_y] = y_batch, | |||
[is_training] = true, | |||
}; | |||
//Console.WriteLine("x: " + x_batch.ToString() + "\n"); | |||
//Console.WriteLine("y: " + y_batch.ToString()); | |||
// original python: | |||
//_, step, loss = sess.run([model.optimizer, model.global_step, model.loss], feed_dict = train_feed_dict) | |||
var result = sess.run(new ITensorOrOperation[] { optimizer, global_step, loss }, train_feed_dict); | |||
loss_value = result[2]; | |||
var step = (int)result[1]; | |||
if (step % 10 == 0 || step < 10) | |||
{ | |||
var estimate = TimeSpan.FromSeconds((stopwatch.Elapsed.TotalSeconds / i) * total); | |||
Console.WriteLine($"Training on batch {i}/{total}. Estimated training time: {estimate}"); | |||
Console.WriteLine($"Step {step} loss: {loss_value}"); | |||
} | |||
if (step % 100 == 0) | |||
{ | |||
// # Test accuracy with validation data for each epoch. | |||
var valid_batches = batch_iter(valid_x, valid_y, BATCH_SIZE, 1); | |||
var (sum_accuracy, cnt) = (0.0f, 0); | |||
foreach (var (valid_x_batch, valid_y_batch, total_validation_batches) in valid_batches) | |||
{ | |||
var valid_feed_dict = new FeedDict | |||
{ | |||
[model_x] = valid_x_batch, | |||
[model_y] = valid_y_batch, | |||
[is_training] = false | |||
}; | |||
var result1 = sess.run(accuracy, valid_feed_dict); | |||
float accuracy_value = result1; | |||
sum_accuracy += accuracy_value; | |||
cnt += 1; | |||
} | |||
var valid_accuracy = sum_accuracy / cnt; | |||
print($"\nValidation Accuracy = {valid_accuracy}\n"); | |||
// # Save model | |||
// if valid_accuracy > max_accuracy: | |||
// max_accuracy = valid_accuracy | |||
// saver.save(sess, "{0}/{1}.ckpt".format(args.model, args.model), global_step = step) | |||
// print("Model is saved.\n") | |||
} | |||
} | |||
return false; | |||
} | |||
protected virtual bool RunWithBuiltGraph(Session session, Graph graph) | |||
{ | |||
Console.WriteLine("Building dataset..."); | |||
var (x, y, alphabet_size) = DataHelpers.build_char_dataset("train", model_name, CHAR_MAX_LEN, DataLimit); | |||
var (train_x, valid_x, train_y, valid_y) = train_test_split(x, y, test_size: 0.15f); | |||
ITextClassificationModel model = null; | |||
switch (model_name) // word_cnn | char_cnn | vd_cnn | word_rnn | att_rnn | rcnn | |||
{ | |||
case "word_cnn": | |||
case "char_cnn": | |||
case "word_rnn": | |||
case "att_rnn": | |||
case "rcnn": | |||
throw new NotImplementedException(); | |||
break; | |||
case "vd_cnn": | |||
model = new VdCnn(alphabet_size, CHAR_MAX_LEN, NUM_CLASS); | |||
break; | |||
} | |||
// todo train the model | |||
return false; | |||
} | |||
// TODO: this originally is an SKLearn utility function. it randomizes train and test which we don't do here | |||
private (NDArray, NDArray, NDArray, NDArray) train_test_split(NDArray x, NDArray y, float test_size = 0.3f) | |||
{ | |||
Console.WriteLine("Splitting in Training and Testing data..."); | |||
int len = x.shape[0]; | |||
//int classes = y.Data<int>().Distinct().Count(); | |||
//int samples = len / classes; | |||
int train_size = (int)Math.Round(len * (1 - test_size)); | |||
var train_x = x[new Slice(stop: train_size), new Slice()]; | |||
var valid_x = x[new Slice(start: train_size + 1), new Slice()]; | |||
var train_y = y[new Slice(stop: train_size)]; | |||
var valid_y = y[new Slice(start: train_size + 1)]; | |||
Console.WriteLine("\tDONE"); | |||
return (train_x, valid_x, train_y, valid_y); | |||
} | |||
//private (int[][], int[][], int[], int[]) train_test_split(int[][] x, int[] y, float test_size = 0.3f) | |||
//{ | |||
// Console.WriteLine("Splitting in Training and Testing data..."); | |||
// var stopwatch = Stopwatch.StartNew(); | |||
// int len = x.Length; | |||
// int train_size = int.Parse((len * (1 - test_size)).ToString()); | |||
// var random = new Random(17); | |||
// // we collect indices of labels | |||
// var labels = new Dictionary<int, HashSet<int>>(); | |||
// var shuffled_indices = random.Shuffle<int>(range(len).ToArray()); | |||
// foreach (var i in shuffled_indices) | |||
// { | |||
// var label = y[i]; | |||
// if (!labels.ContainsKey(i)) | |||
// labels[label] = new HashSet<int>(); | |||
// labels[label].Add(i); | |||
// } | |||
// var train_x = new int[train_size][]; | |||
// var valid_x = new int[len - train_size][]; | |||
// var train_y = new int[train_size]; | |||
// var valid_y = new int[len - train_size]; | |||
// FillWithShuffledLabels(x, y, train_x, train_y, random, labels); | |||
// FillWithShuffledLabels(x, y, valid_x, valid_y, random, labels); | |||
// Console.WriteLine("\tDONE " + stopwatch.Elapsed); | |||
// return (train_x, valid_x, train_y, valid_y); | |||
//} | |||
private static void FillWithShuffledLabels(int[][] x, int[] y, int[][] shuffled_x, int[] shuffled_y, Random random, Dictionary<int, HashSet<int>> labels) | |||
{ | |||
int i = 0; | |||
var label_keys = labels.Keys.ToArray(); | |||
while (i < shuffled_x.Length) | |||
{ | |||
var key = label_keys[random.Next(label_keys.Length)]; | |||
var set = labels[key]; | |||
var index = set.First(); | |||
if (set.Count == 0) | |||
{ | |||
labels.Remove(key); // remove the set as it is empty | |||
label_keys = labels.Keys.ToArray(); | |||
} | |||
shuffled_x[i] = x[index]; | |||
shuffled_y[i] = y[index]; | |||
i++; | |||
} | |||
} | |||
private IEnumerable<(NDArray, NDArray, int)> batch_iter(NDArray inputs, NDArray outputs, int batch_size, int num_epochs) | |||
{ | |||
var num_batches_per_epoch = (len(inputs) - 1) / batch_size + 1; | |||
var total_batches = num_batches_per_epoch * num_epochs; | |||
foreach (var epoch in range(num_epochs)) | |||
{ | |||
foreach (var batch_num in range(num_batches_per_epoch)) | |||
{ | |||
var start_index = batch_num * batch_size; | |||
var end_index = Math.Min((batch_num + 1) * batch_size, len(inputs)); | |||
if (end_index <= start_index) | |||
break; | |||
yield return (inputs[new Slice(start_index, end_index)], outputs[new Slice(start_index, end_index)], total_batches); | |||
} | |||
} | |||
} | |||
public void PrepareData() | |||
{ | |||
if (UseSubset) | |||
{ | |||
var url = "https://raw.githubusercontent.com/SciSharp/TensorFlow.NET/master/data/dbpedia_subset.zip"; | |||
Web.Download(url, dataDir, "dbpedia_subset.zip"); | |||
Compress.UnZip(Path.Combine(dataDir, "dbpedia_subset.zip"), Path.Combine(dataDir, "dbpedia_csv")); | |||
} | |||
else | |||
{ | |||
string url = "https://github.com/le-scientifique/torchDatasets/raw/master/dbpedia_csv.tar.gz"; | |||
Web.Download(url, dataDir, dataFileName); | |||
Compress.ExtractTGZ(Path.Join(dataDir, dataFileName), dataDir); | |||
} | |||
if (ImportGraph) | |||
{ | |||
// download graph meta data | |||
var meta_file = model_name + ".meta"; | |||
var meta_path = Path.Combine("graph", meta_file); | |||
if (File.GetLastWriteTime(meta_path) < new DateTime(2019, 05, 11)) | |||
{ | |||
// delete old cached file which contains errors | |||
Console.WriteLine("Discarding cached file: " + meta_path); | |||
File.Delete(meta_path); | |||
} | |||
var url = "https://raw.githubusercontent.com/SciSharp/TensorFlow.NET/master/graph/" + meta_file; | |||
Web.Download(url, "graph", meta_file); | |||
} | |||
} | |||
} | |||
} |
@@ -1,14 +1,14 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
using Tensorflow; | |||
namespace TensorFlowNET.Examples.Text.cnn_models | |||
{ | |||
interface ITextClassificationModel | |||
{ | |||
Tensor is_training { get; } | |||
Tensor x { get;} | |||
Tensor y { get; } | |||
} | |||
} | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
using Tensorflow; | |||
namespace TensorFlowNET.Examples.Text.cnn_models | |||
{ | |||
interface ITextClassificationModel | |||
{ | |||
Tensor is_training { get; } | |||
Tensor x { get;} | |||
Tensor y { get; } | |||
} | |||
} |
@@ -0,0 +1,22 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Text; | |||
namespace TensorFlowNET.Examples.Utility | |||
{ | |||
public static class ArrayShuffling | |||
{ | |||
public static T[] Shuffle<T>(this Random rng, T[] array) | |||
{ | |||
int n = array.Length; | |||
while (n > 1) | |||
{ | |||
int k = rng.Next(n--); | |||
T temp = array[n]; | |||
array[n] = array[k]; | |||
array[k] = temp; | |||
} | |||
return array; | |||
} | |||
} | |||
} |
@@ -0,0 +1,108 @@ | |||
using System; | |||
using System.Collections; | |||
using System.Collections.Generic; | |||
using System.IO; | |||
using System.Linq; | |||
using System.Text; | |||
using Tensorflow.Estimator; | |||
namespace TensorFlowNET.Examples.Utility | |||
{ | |||
public class CoNLLDataset | |||
{ | |||
static Dictionary<string, int> vocab_chars; | |||
static Dictionary<string, int> vocab_words; | |||
static Dictionary<string, int> vocab_tags; | |||
HyperParams _hp; | |||
string _path; | |||
public CoNLLDataset(string path, HyperParams hp) | |||
{ | |||
if (vocab_chars == null) | |||
vocab_chars = load_vocab(hp.filepath_chars); | |||
if (vocab_words == null) | |||
vocab_words = load_vocab(hp.filepath_words); | |||
if (vocab_tags == null) | |||
vocab_tags = load_vocab(hp.filepath_tags); | |||
_path = path; | |||
} | |||
private (int[], int) processing_word(string word) | |||
{ | |||
var char_ids = word.ToCharArray().Select(x => vocab_chars[x.ToString()]).ToArray(); | |||
// 1. preprocess word | |||
if (true) // lowercase | |||
word = word.ToLower(); | |||
if (false) // isdigit | |||
word = "$NUM$"; | |||
// 2. get id of word | |||
int id = vocab_words.GetValueOrDefault(word, vocab_words["$UNK$"]); | |||
return (char_ids, id); | |||
} | |||
private int processing_tag(string word) | |||
{ | |||
// 1. preprocess word | |||
if (false) // lowercase | |||
word = word.ToLower(); | |||
if (false) // isdigit | |||
word = "$NUM$"; | |||
// 2. get id of word | |||
int id = vocab_tags.GetValueOrDefault(word, -1); | |||
return id; | |||
} | |||
private Dictionary<string, int> load_vocab(string filename) | |||
{ | |||
var dict = new Dictionary<string, int>(); | |||
int i = 0; | |||
File.ReadAllLines(filename) | |||
.Select(x => dict[x] = i++) | |||
.Count(); | |||
return dict; | |||
} | |||
public IEnumerable<((int[], int)[], int[])> GetItems() | |||
{ | |||
var lines = File.ReadAllLines(_path); | |||
int niter = 0; | |||
var words = new List<(int[], int)>(); | |||
var tags = new List<int>(); | |||
foreach (var l in lines) | |||
{ | |||
string line = l.Trim(); | |||
if (string.IsNullOrEmpty(line) || line.StartsWith("-DOCSTART-")) | |||
{ | |||
if (words.Count > 0) | |||
{ | |||
niter++; | |||
yield return (words.ToArray(), tags.ToArray()); | |||
words.Clear(); | |||
tags.Clear(); | |||
} | |||
} | |||
else | |||
{ | |||
var ls = line.Split(' '); | |||
// process word | |||
var word = processing_word(ls[0]); | |||
var tag = processing_tag(ls[1]); | |||
words.Add(word); | |||
tags.Add(tag); | |||
} | |||
} | |||
} | |||
} | |||
} |
@@ -23,52 +23,45 @@ namespace TensorFlowNET.Examples.Utility | |||
string line; | |||
string newText = "{\"items\":["; | |||
try | |||
using (System.IO.StreamReader reader = new System.IO.StreamReader(filePath)) | |||
{ | |||
using (System.IO.StreamReader reader = new System.IO.StreamReader(filePath)) | |||
while ((line = reader.ReadLine()) != null) | |||
{ | |||
string newline = string.Empty; | |||
while ((line = reader.ReadLine()) != null) | |||
if (line.Contains("{")) | |||
{ | |||
string newline = string.Empty; | |||
if (line.Contains("{")) | |||
{ | |||
newline = line.Replace("item", "").Trim(); | |||
//newText += line.Insert(line.IndexOf("=") + 1, "\"") + "\","; | |||
newText += newline; | |||
} | |||
else if (line.Contains("}")) | |||
{ | |||
newText = newText.Remove(newText.Length - 1); | |||
newText += line; | |||
newText += ","; | |||
} | |||
else | |||
{ | |||
newline = line.Replace(":", "\":").Trim(); | |||
newline = "\"" + newline;// newline.Insert(0, "\""); | |||
newline += ","; | |||
newText += newline; | |||
} | |||
newline = line.Replace("item", "").Trim(); | |||
//newText += line.Insert(line.IndexOf("=") + 1, "\"") + "\","; | |||
newText += newline; | |||
} | |||
else if (line.Contains("}")) | |||
{ | |||
newText = newText.Remove(newText.Length - 1); | |||
newText += line; | |||
newText += ","; | |||
} | |||
else | |||
{ | |||
newline = line.Replace(":", "\":").Trim(); | |||
newline = "\"" + newline;// newline.Insert(0, "\""); | |||
newline += ","; | |||
newText = newText.Remove(newText.Length - 1); | |||
newText += "]}"; | |||
newText += newline; | |||
} | |||
reader.Close(); | |||
} | |||
PbtxtItems items = JsonConvert.DeserializeObject<PbtxtItems>(newText); | |||
newText = newText.Remove(newText.Length - 1); | |||
newText += "]}"; | |||
return items; | |||
} | |||
catch (Exception ex) | |||
{ | |||
return null; | |||
reader.Close(); | |||
} | |||
PbtxtItems items = JsonConvert.DeserializeObject<PbtxtItems>(newText); | |||
return items; | |||
} | |||
} | |||
} |
@@ -61,14 +61,6 @@ namespace TensorFlowNET.ExamplesTests | |||
new LogisticRegression() { Enabled = true, training_epochs=10, train_size = 500, validation_size = 100, test_size = 100 }.Run(); | |||
} | |||
[Ignore] | |||
[TestMethod] | |||
public void MetaGraph() | |||
{ | |||
tf.Graph().as_default(); | |||
new MetaGraph() { Enabled = true }.Run(); | |||
} | |||
[Ignore] | |||
[TestMethod] | |||
public void NaiveBayesClassifier() | |||
@@ -5,6 +5,7 @@ using System.Runtime.InteropServices; | |||
using System.Text; | |||
using Tensorflow; | |||
using Buffer = Tensorflow.Buffer; | |||
using static Tensorflow.Python; | |||
namespace TensorFlowNET.UnitTest | |||
{ | |||
@@ -417,6 +418,19 @@ namespace TensorFlowNET.UnitTest | |||
} | |||
public void ImportGraphMeta() | |||
{ | |||
var dir = "my-save-dir/"; | |||
with(tf.Session(), sess => | |||
{ | |||
var new_saver = tf.train.import_meta_graph(dir + "my-model-10000.meta"); | |||
new_saver.restore(sess, dir + "my-model-10000"); | |||
var labels = tf.constant(0, dtype: tf.int32, shape: new int[] { 100 }, name: "labels"); | |||
var batch_size = tf.size(labels); | |||
var logits = (tf.get_collection("logits") as List<ITensorOrOperation>)[0] as Tensor; | |||
var loss = tf.losses.sparse_softmax_cross_entropy(labels: labels, | |||
logits: logits); | |||
}); | |||
} | |||
} | |||
} |
@@ -25,10 +25,10 @@ namespace TensorFlowNET.UnitTest.control_flow_ops_test | |||
foreach (Operation op in sess.graph.get_operations()) | |||
{ | |||
var control_flow_context = op._get_control_flow_context(); | |||
if (control_flow_context != null) | |||
/*if (control_flow_context != null) | |||
self.assertProtoEquals(control_flow_context.to_proto(), | |||
WhileContext.from_proto( | |||
control_flow_context.to_proto()).to_proto()); | |||
control_flow_context.to_proto()).to_proto(), "");*/ | |||
} | |||
}); | |||
} | |||