|
- using System;
- using System.Collections;
- using System.Collections.Generic;
- using System.IO;
- using System.Linq;
- using System.Text;
- using NumSharp;
- using Tensorflow;
- using Tensorflow.Keras.Engine;
- using TensorFlowNET.Examples.Text.cnn_models;
- using TensorFlowNET.Examples.TextClassification;
- using TensorFlowNET.Examples.Utility;
- using static Tensorflow.Python;
-
- namespace TensorFlowNET.Examples.CnnTextClassification
- {
- /// <summary>
- /// https://github.com/dongjun-Lee/text-classification-models-tf
- /// </summary>
- public class TextClassificationTrain : IExample
- {
- public int Priority => 100;
- public bool Enabled { get; set; } = false;
- public string Name => "Text Classification";
- public int? DataLimit = null;
- public bool ImportGraph { get; set; } = true;
-
- private string dataDir = "text_classification";
- private string dataFileName = "dbpedia_csv.tar.gz";
-
- public string model_name = "vd_cnn"; // word_cnn | char_cnn | vd_cnn | word_rnn | att_rnn | rcnn
-
- private const int CHAR_MAX_LEN = 1014;
- private const int NUM_CLASS = 2;
- private const int BATCH_SIZE = 64;
- private const int NUM_EPOCHS = 10;
- protected float loss_value = 0;
-
- public bool Run()
- {
- PrepareData();
- return with(tf.Session(), sess =>
- {
- if (ImportGraph)
- return RunWithImportedGraph(sess);
- else
- return RunWithBuiltGraph(sess);
- });
- }
-
- protected virtual bool RunWithImportedGraph(Session sess)
- {
- var graph = tf.Graph().as_default();
- Console.WriteLine("Building dataset...");
- var (x, y, alphabet_size) = DataHelpers.build_char_dataset("train", model_name, CHAR_MAX_LEN, DataLimit);
-
- var (train_x, valid_x, train_y, valid_y) = train_test_split(x, y, test_size: 0.15f);
-
- var meta_file = model_name + "_untrained.meta";
- tf.train.import_meta_graph(Path.Join("graph", meta_file));
-
- //sess.run(tf.global_variables_initializer()); // not necessary here, has already been done before meta graph export
-
- var train_batches = batch_iter(train_x, train_y, BATCH_SIZE, NUM_EPOCHS);
- var num_batches_per_epoch = (len(train_x) - 1); // BATCH_SIZE + 1
- double max_accuracy = 0;
-
- Tensor is_training = graph.get_operation_by_name("is_training");
- Tensor model_x = graph.get_operation_by_name("x");
- Tensor model_y = graph.get_operation_by_name("y");
- Tensor loss = graph.get_operation_by_name("Variable");
- Tensor accuracy = graph.get_operation_by_name("accuracy/accuracy");
-
- foreach (var (x_batch, y_batch) in train_batches)
- {
- var train_feed_dict = new Hashtable
- {
- [model_x] = x_batch,
- [model_y] = y_batch,
- [is_training] = true,
- };
-
- //_, step, loss = sess.run([model.optimizer, model.global_step, model.loss], feed_dict = train_feed_dict)
- }
-
- return false;
- }
-
- protected virtual bool RunWithBuiltGraph(Session session)
- {
- Console.WriteLine("Building dataset...");
- var (x, y, alphabet_size) = DataHelpers.build_char_dataset("train", model_name, CHAR_MAX_LEN, DataLimit);
-
- var (train_x, valid_x, train_y, valid_y) = train_test_split(x, y, test_size: 0.15f);
-
- ITextClassificationModel model = null;
- switch (model_name) // word_cnn | char_cnn | vd_cnn | word_rnn | att_rnn | rcnn
- {
- case "word_cnn":
- case "char_cnn":
- case "word_rnn":
- case "att_rnn":
- case "rcnn":
- throw new NotImplementedException();
- break;
- case "vd_cnn":
- model=new VdCnn(alphabet_size, CHAR_MAX_LEN, NUM_CLASS);
- break;
- }
- // todo train the model
- return false;
- }
-
- private (int[][], int[][], int[], int[]) train_test_split(int[][] x, int[] y, float test_size = 0.3f)
- {
- int len = x.Length;
- int classes = y.Distinct().Count();
- int samples = len / classes;
- int train_size = int.Parse((samples * (1 - test_size)).ToString());
-
- var train_x = new List<int[]>();
- var valid_x = new List<int[]>();
- var train_y = new List<int>();
- var valid_y = new List<int>();
-
- for (int i = 0; i < classes; i++)
- {
- for (int j = 0; j < samples; j++)
- {
- int idx = i * samples + j;
- if (idx < train_size + samples * i)
- {
- train_x.Add(x[idx]);
- train_y.Add(y[idx]);
- }
- else
- {
- valid_x.Add(x[idx]);
- valid_y.Add(y[idx]);
- }
- }
- }
-
- return (train_x.ToArray(), valid_x.ToArray(), train_y.ToArray(), valid_y.ToArray());
- }
-
- private IEnumerable<(NDArray, NDArray)> batch_iter(int[][] raw_inputs, int[] raw_outputs, int batch_size, int num_epochs)
- {
- var inputs = np.array(raw_inputs);
- var outputs = np.array(raw_outputs);
-
- var num_batches_per_epoch = (len(inputs) - 1); // batch_size + 1
- foreach (var epoch in range(num_epochs))
- {
- foreach (var batch_num in range(num_batches_per_epoch))
- {
- var start_index = batch_num * batch_size;
- var end_index = Math.Min((batch_num + 1) * batch_size, len(inputs));
- yield return (inputs[$"{start_index}:{end_index}"], outputs[$"{start_index}:{end_index}"]);
- }
- }
- }
-
- public void PrepareData()
- {
- string url = "https://github.com/le-scientifique/torchDatasets/raw/master/dbpedia_csv.tar.gz";
- Web.Download(url, dataDir, dataFileName);
- Compress.ExtractTGZ(Path.Join(dataDir, dataFileName), dataDir);
-
- if (ImportGraph)
- {
- // download graph meta data
- var meta_file = model_name + "_untrained.meta";
- url = "https://raw.githubusercontent.com/SciSharp/TensorFlow.NET/master/graph/" + meta_file;
- Web.Download(url, "graph", meta_file);
- }
- }
- }
- }
|