@@ -80,6 +80,11 @@ namespace Tensorflow.Eager | |||||
Tensor[] op_outputs) | Tensor[] op_outputs) | ||||
=> (out_grads, unneeded_gradients) => | => (out_grads, unneeded_gradients) => | ||||
{ | { | ||||
if(!ops.gradientFunctions.ContainsKey(op_name)) | |||||
{ | |||||
throw new Exception($"gradientFunctions not find op_name: {op_name}"); | |||||
} | |||||
if (ops.gradientFunctions[op_name] == null) | if (ops.gradientFunctions[op_name] == null) | ||||
return new Tensor[op_inputs.Length]; | return new Tensor[op_inputs.Length]; | ||||
@@ -229,6 +229,37 @@ namespace Tensorflow.Gradients | |||||
}; | }; | ||||
} | } | ||||
/// <summary> | |||||
/// Gradient function for Conv2D. | |||||
/// </summary> | |||||
/// <param name="op"></param> | |||||
/// <param name="grads"></param> | |||||
/// <returns></returns> | |||||
[RegisterGradient("DepthwiseConv2dNative")] | |||||
public static Tensor[] _DepthwiseConv2DGrad(Operation op, Tensor[] grads) | |||||
{ | |||||
var dilations = op.get_attr_list<int>("dilations"); | |||||
var strides = op.get_attr_list<int>("strides"); | |||||
var padding = op.get_attr<string>("padding"); | |||||
var explicit_paddings = op.get_attr_list<int>("explicit_paddings"); | |||||
var data_format = op.get_attr<string>("data_format"); | |||||
var shape = gen_array_ops.shape_n(new Tensor[] { op.inputs[0], op.inputs[1] }); | |||||
return new Tensor[] | |||||
{ | |||||
gen_nn_ops.depthwise_conv2d_native_backprop_input( | |||||
shape[0], op.inputs[1], grads[0], | |||||
strides, padding, explicit_paddings, | |||||
dilations: dilations, | |||||
data_format: data_format), | |||||
gen_nn_ops.depthwise_conv2d_native_backprop_filter(op.inputs[0], shape[1], grads[0], | |||||
strides, padding, | |||||
dilations: dilations, | |||||
explicit_paddings: explicit_paddings, | |||||
data_format: data_format) | |||||
}; | |||||
} | |||||
[RegisterGradient("FusedBatchNorm")] | [RegisterGradient("FusedBatchNorm")] | ||||
public static Tensor[] _FusedBatchNormGrad(Operation op, Tensor[] grads) | public static Tensor[] _FusedBatchNormGrad(Operation op, Tensor[] grads) | ||||
=> _BaseFusedBatchNormGrad(op, 0, grads); | => _BaseFusedBatchNormGrad(op, 0, grads); | ||||
@@ -95,6 +95,19 @@ namespace Tensorflow.Keras.Layers | |||||
bool use_bias = true, | bool use_bias = true, | ||||
string kernel_initializer = "glorot_uniform", | string kernel_initializer = "glorot_uniform", | ||||
string bias_initializer = "zeros"); | string bias_initializer = "zeros"); | ||||
public ILayer DepthwiseConv2D(Shape kernel_size = null, | |||||
Shape strides = null, | |||||
string padding = "valid", | |||||
string data_format = null, | |||||
Shape dilation_rate = null, | |||||
int groups = 1, | |||||
int depth_multiplier = 1, | |||||
string activation = null, | |||||
bool use_bias = false, | |||||
string kernel_initializer = "glorot_uniform", | |||||
string bias_initializer = "zeros", | |||||
string depthwise_initializer = "glorot_uniform" | |||||
); | |||||
public ILayer Dense(int units); | public ILayer Dense(int units); | ||||
public ILayer Dense(int units, | public ILayer Dense(int units, | ||||
@@ -249,6 +249,9 @@ namespace Tensorflow | |||||
case sbyte val: | case sbyte val: | ||||
tensor_proto.IntVal.AddRange(new[] { (int)val }); | tensor_proto.IntVal.AddRange(new[] { (int)val }); | ||||
break; | break; | ||||
case byte val: | |||||
tensor_proto.IntVal.AddRange(new[] { (int)val }); | |||||
break; | |||||
case int val: | case int val: | ||||
tensor_proto.IntVal.AddRange(new[] { val }); | tensor_proto.IntVal.AddRange(new[] { val }); | ||||
break; | break; | ||||
@@ -262,7 +265,7 @@ namespace Tensorflow | |||||
tensor_proto.DoubleVal.AddRange(new[] { val }); | tensor_proto.DoubleVal.AddRange(new[] { val }); | ||||
break; | break; | ||||
default: | default: | ||||
throw new Exception("make_tensor_proto Not Implemented"); | |||||
throw new Exception($"make_tensor_proto Not Implemented {values.GetType().Name}"); | |||||
} | } | ||||
} | } | ||||
@@ -0,0 +1,167 @@ | |||||
using System; | |||||
using System.Collections.Generic; | |||||
using System.Text; | |||||
using System; | |||||
using Tensorflow.Keras.ArgsDefinition; | |||||
using Tensorflow.Keras.Saving; | |||||
using Tensorflow.Common.Types; | |||||
using Tensorflow.Keras.Utils; | |||||
using Tensorflow.Operations; | |||||
using Newtonsoft.Json; | |||||
using System.Security.Cryptography; | |||||
namespace Tensorflow.Keras.Layers | |||||
{ | |||||
public class DepthwiseConv2DArgs: Conv2DArgs | |||||
{ | |||||
/// <summary> | |||||
/// depth_multiplier: The number of depthwise convolution output channels for | |||||
/// each input channel.The total number of depthwise convolution output | |||||
/// channels will be equal to `filters_in* depth_multiplier`. | |||||
/// </summary> | |||||
[JsonProperty("depth_multiplier")] | |||||
public int DepthMultiplier { get; set; } = 1; | |||||
[JsonProperty("depthwise_initializer")] | |||||
public IInitializer DepthwiseInitializer { get; set; } | |||||
} | |||||
public class DepthwiseConv2D : Conv2D | |||||
{ | |||||
/// <summary> | |||||
/// depth_multiplier: The number of depthwise convolution output channels for | |||||
/// each input channel.The total number of depthwise convolution output | |||||
/// channels will be equal to `filters_in* depth_multiplier`. | |||||
/// </summary> | |||||
int DepthMultiplier = 1; | |||||
IInitializer DepthwiseInitializer; | |||||
int[] strides; | |||||
int[] dilation_rate; | |||||
string getDataFormat() | |||||
{ | |||||
return data_format == "channels_first" ? "NCHW" : "NHWC"; | |||||
} | |||||
static int _id = 1; | |||||
public DepthwiseConv2D(DepthwiseConv2DArgs args):base(args) | |||||
{ | |||||
args.Padding = args.Padding.ToUpper(); | |||||
if(string.IsNullOrEmpty(args.Name)) | |||||
name = "DepthwiseConv2D_" + _id; | |||||
this.DepthMultiplier = args.DepthMultiplier; | |||||
this.DepthwiseInitializer = args.DepthwiseInitializer; | |||||
} | |||||
public override void build(KerasShapesWrapper input_shape) | |||||
{ | |||||
//base.build(input_shape); | |||||
var shape = input_shape.ToSingleShape(); | |||||
int channel_axis = data_format == "channels_first" ? 1 : -1; | |||||
var input_channel = channel_axis < 0 ? | |||||
shape.dims[shape.ndim + channel_axis] : | |||||
shape.dims[channel_axis]; | |||||
var arg = args as DepthwiseConv2DArgs; | |||||
if (arg.Strides.ndim != shape.ndim) | |||||
{ | |||||
if (arg.Strides.ndim == 2) | |||||
{ | |||||
this.strides = new int[] { 1, (int)arg.Strides[0], (int)arg.Strides[1], 1 }; | |||||
} | |||||
else | |||||
{ | |||||
this.strides = conv_utils.normalize_tuple(new int[] { (int)arg.Strides[0] }, shape.ndim, "strides"); | |||||
} | |||||
} | |||||
else | |||||
{ | |||||
this.strides = arg.Strides.dims.Select(o=>(int)(o)).ToArray(); | |||||
} | |||||
if (arg.DilationRate.ndim != shape.ndim) | |||||
{ | |||||
this.dilation_rate = conv_utils.normalize_tuple(new int[] { (int)arg.DilationRate[0] }, shape.ndim, "dilation_rate"); | |||||
} | |||||
long channel_data = data_format == "channels_first" ? shape[0] : shape[shape.Length - 1]; | |||||
var depthwise_kernel_shape = this.kernel_size.dims.concat(new long[] { | |||||
channel_data, | |||||
this.DepthMultiplier | |||||
}); | |||||
this.kernel = this.add_weight( | |||||
shape: depthwise_kernel_shape, | |||||
initializer: this.DepthwiseInitializer != null ? this.DepthwiseInitializer : this.kernel_initializer, | |||||
name: "depthwise_kernel", | |||||
trainable: true, | |||||
dtype: DType, | |||||
regularizer: this.kernel_regularizer | |||||
); | |||||
var axes = new Dictionary<int, int>(); | |||||
axes.Add(-1, (int)input_channel); | |||||
inputSpec = new InputSpec(min_ndim: rank + 2, axes: axes); | |||||
if (use_bias) | |||||
{ | |||||
bias = add_weight(name: "bias", | |||||
shape: ((int)channel_data), | |||||
initializer: bias_initializer, | |||||
trainable: true, | |||||
dtype: DType); | |||||
} | |||||
built = true; | |||||
_buildInputShape = input_shape; | |||||
} | |||||
protected override Tensors Call(Tensors inputs, Tensors state = null, | |||||
bool? training = false, IOptionalArgs? optional_args = null) | |||||
{ | |||||
Tensor outputs = null; | |||||
outputs = gen_nn_ops.depthwise_conv2d_native( | |||||
inputs, | |||||
filter: this.kernel.AsTensor(), | |||||
strides: this.strides, | |||||
padding: this.padding, | |||||
dilations: this.dilation_rate, | |||||
data_format: this.getDataFormat(), | |||||
name: name | |||||
); | |||||
if (use_bias) | |||||
{ | |||||
if (data_format == "channels_first") | |||||
{ | |||||
throw new NotImplementedException("call channels_first"); | |||||
} | |||||
else | |||||
{ | |||||
outputs = gen_nn_ops.bias_add(outputs, ops.convert_to_tensor(bias), | |||||
data_format: this.getDataFormat(), name: name); | |||||
} | |||||
} | |||||
if (activation != null) | |||||
outputs = activation.Apply(outputs); | |||||
return outputs; | |||||
} | |||||
} | |||||
} |
@@ -210,6 +210,38 @@ namespace Tensorflow.Keras.Layers | |||||
Activation = keras.activations.GetActivationFromName(activation) | Activation = keras.activations.GetActivationFromName(activation) | ||||
}); | }); | ||||
public ILayer DepthwiseConv2D(Shape kernel_size = null, | |||||
Shape strides = null, | |||||
string padding = "valid", | |||||
string data_format = null, | |||||
Shape dilation_rate = null, | |||||
int groups = 1, | |||||
int depth_multiplier = 1, | |||||
string activation = null, | |||||
bool use_bias = false, | |||||
string kernel_initializer = "glorot_uniform", | |||||
string bias_initializer = "zeros", | |||||
string depthwise_initializer = "glorot_uniform" | |||||
) | |||||
=> new DepthwiseConv2D(new DepthwiseConv2DArgs | |||||
{ | |||||
Rank = 2, | |||||
Filters = 1, | |||||
KernelSize = (kernel_size == null) ? (5, 5) : kernel_size, | |||||
Strides = strides == null ? (1) : strides, | |||||
Padding = padding, | |||||
DepthMultiplier = depth_multiplier, | |||||
DataFormat = data_format, | |||||
DilationRate = dilation_rate == null ? (1) : dilation_rate, | |||||
Groups = groups, | |||||
UseBias = use_bias, | |||||
KernelInitializer = GetInitializerByName(kernel_initializer), | |||||
DepthwiseInitializer = GetInitializerByName(depthwise_initializer == null ? kernel_initializer : depthwise_initializer), | |||||
BiasInitializer = GetInitializerByName(bias_initializer), | |||||
Activation = keras.activations.GetActivationFromName(activation), | |||||
}); | |||||
/// <summary> | /// <summary> | ||||
/// Transposed convolution layer (sometimes called Deconvolution). | /// Transposed convolution layer (sometimes called Deconvolution). | ||||
/// </summary> | /// </summary> | ||||
@@ -33,6 +33,40 @@ namespace Tensorflow.Keras.UnitTest | |||||
return ret; | return ret; | ||||
} | } | ||||
public void AssertArray(int[] f1, int[] f2) | |||||
{ | |||||
bool ret = false; | |||||
for (var i = 0; i < f1.Length; i++) | |||||
{ | |||||
ret = f1[i] == f2[i]; | |||||
if (!ret) | |||||
break; | |||||
} | |||||
if (!ret) | |||||
{ | |||||
Assert.Fail($"Array not Equal:[{string.Join(",", f1)}] [{string.Join(",", f2)}]"); | |||||
} | |||||
} | |||||
public void AssertArray(float[] f1, float[] f2) | |||||
{ | |||||
bool ret = false; | |||||
var tolerance = .00001f; | |||||
for (var i = 0; i < f1.Length; i++) | |||||
{ | |||||
ret = Math.Abs(f1[i] - f2[i]) <= tolerance; | |||||
if (!ret) | |||||
break; | |||||
} | |||||
if (!ret) | |||||
{ | |||||
Assert.Fail($"Array float not Equal:[{string.Join(",", f1)}] [{string.Join(",", f2)}]"); | |||||
} | |||||
} | |||||
public bool Equal(double[] d1, double[] d2) | public bool Equal(double[] d1, double[] d2) | ||||
{ | { | ||||
bool ret = false; | bool ret = false; | ||||
@@ -1,6 +1,8 @@ | |||||
using Microsoft.VisualStudio.TestTools.UnitTesting; | using Microsoft.VisualStudio.TestTools.UnitTesting; | ||||
using System.Linq; | |||||
using Tensorflow.NumPy; | using Tensorflow.NumPy; | ||||
using static Tensorflow.KerasApi; | using static Tensorflow.KerasApi; | ||||
using static Tensorflow.Binding; | |||||
namespace Tensorflow.Keras.UnitTest.Layers | namespace Tensorflow.Keras.UnitTest.Layers | ||||
{ | { | ||||
@@ -193,5 +195,128 @@ namespace Tensorflow.Keras.UnitTest.Layers | |||||
Assert.AreEqual(x.dims[2], y.shape[2]); | Assert.AreEqual(x.dims[2], y.shape[2]); | ||||
Assert.AreEqual(filters, y.shape[3]); | Assert.AreEqual(filters, y.shape[3]); | ||||
} | } | ||||
[TestMethod] | |||||
public void BasicDepthwiseConv2D() | |||||
{ | |||||
var conv = keras.layers.DepthwiseConv2D(kernel_size:3, strides:1, activation: null, | |||||
padding:"same", depthwise_initializer: "ones"); | |||||
var x = np.arange(2 * 9* 9* 3).reshape((2, 9, 9, 3)); | |||||
var x2 = ops.convert_to_tensor(x, TF_DataType.TF_FLOAT); | |||||
var y = conv.Apply(x2); | |||||
print($"input:{x2.shape} DepthwiseConv2D.out: {y.shape}"); | |||||
Assert.AreEqual(4, y.shape.ndim); | |||||
var arr = y.numpy().reshape((2, 9, 9, 3)); | |||||
AssertArray(x[new int[] { 1, 1, 1 }].ToArray<int>(), new int[] { 273, 274, 275 }); | |||||
AssertArray(arr[new int[] { 1, 1, 1 }].ToArray<float>(), new float[] { 2457f, 2466f, 2475f }); | |||||
var bn = keras.layers.BatchNormalization(); | |||||
var y2 = bn.Apply(y); | |||||
arr = y2.numpy().ToArray<float>(); | |||||
double delta = 0.0001; // 误差范围 | |||||
Assert.AreEqual(arr[0], 59.97002f, delta); | |||||
Assert.AreEqual(arr[1], 63.96802f, delta); | |||||
} | |||||
[TestMethod] | |||||
public void BasicDepthwiseConv2D_strides_2() | |||||
{ | |||||
var conv = keras.layers.DepthwiseConv2D(kernel_size: 3, strides: (1, 2, 2, 1), activation: null, | |||||
padding: "same", depthwise_initializer: "ones"); | |||||
var x = np.arange(2 * 9 * 9 * 3).reshape((2, 9, 9, 3)); | |||||
var x2 = ops.convert_to_tensor(x, TF_DataType.TF_FLOAT); | |||||
var y = conv.Apply(x2); | |||||
print($"input:{x2.shape} DepthwiseConv2D.out: {y.shape}"); | |||||
Assert.AreEqual(4, y.shape.ndim); | |||||
var arr = y.numpy().reshape((2, 5, 5, 3)); | |||||
AssertArray(x[new int[] { 1, 1, 1 }].ToArray<int>(), new int[] { 273, 274, 275 }); | |||||
AssertArray(arr[new int[] { 1, 1, 1 }].ToArray<float>(), new float[] { 2727f, 2736f, 2745f }); | |||||
var bn = keras.layers.BatchNormalization(); | |||||
var y2 = bn.Apply(y); | |||||
arr = y2.numpy().ToArray<float>(); | |||||
double delta = 0.0001; // 误差范围 | |||||
Assert.AreEqual(arr[0], 59.97002f, delta); | |||||
Assert.AreEqual(arr[1], 63.96802f, delta); | |||||
} | |||||
[TestMethod] | |||||
public void BasicDepthwiseConv2D_strides_3() | |||||
{ | |||||
var conv = keras.layers.DepthwiseConv2D(kernel_size: 3, strides: 3, activation: null, | |||||
padding: "same", depthwise_initializer: "ones"); | |||||
var x = np.arange(2 * 9 * 9 * 3).reshape((2, 9, 9, 3)); | |||||
var x2 = ops.convert_to_tensor(x, TF_DataType.TF_FLOAT); | |||||
var y = conv.Apply(x2); | |||||
print($"input:{x2.shape} DepthwiseConv2D.out: {y.shape}"); | |||||
Assert.AreEqual(4, y.shape.ndim); | |||||
var arr = y.numpy().reshape((2, 3, 3, 3)); | |||||
AssertArray(x[new int[] { 1, 1, 1 }].ToArray<int>(), new int[] { 273, 274, 275 }); | |||||
AssertArray(arr[new int[] { 1, 1, 1 }].ToArray<float>(), new float[] { 3267f, 3276f, 3285f }); | |||||
var bn = keras.layers.BatchNormalization(); | |||||
var y2 = bn.Apply(y); | |||||
arr = y2.numpy().ToArray<float>(); | |||||
double delta = 0.0001; // 误差范围 | |||||
Assert.AreEqual(arr[0], 269.86508f, delta); | |||||
Assert.AreEqual(arr[1], 278.8606f, delta); | |||||
} | |||||
[TestMethod] | |||||
public void BasicDepthwiseConv2D_UseBias() | |||||
{ | |||||
var conv = keras.layers.DepthwiseConv2D(kernel_size: 3, strides: 1, activation: null, | |||||
use_bias: true, padding: "same", | |||||
depthwise_initializer: "ones", | |||||
bias_initializer:"ones" | |||||
); | |||||
var weight = conv.get_weights(); | |||||
var x = np.arange(9 * 9 * 3).reshape((1, 9, 9, 3)); | |||||
var x2 = ops.convert_to_tensor(x, TF_DataType.TF_FLOAT); | |||||
var y = conv.Apply(x2); | |||||
Assert.AreEqual(4, y.shape.ndim); | |||||
var arr = y.numpy().ToArray<float>(); | |||||
Assert.AreEqual(arr[0], 61f); | |||||
Assert.AreEqual(arr[1], 65f); | |||||
var bn = keras.layers.BatchNormalization(); | |||||
var y2 = bn.Apply(y); | |||||
arr = y2.numpy().ToArray<float>(); | |||||
double delta = 0.0001; // 误差范围 | |||||
Assert.AreEqual(arr[0], 60.96952f, delta); | |||||
Assert.AreEqual(arr[1], 64.96752f, delta); | |||||
} | |||||
} | } | ||||
} | } |
@@ -20,6 +20,20 @@ namespace TensorFlowNET.UnitTest | |||||
return Math.Abs(f1 - f2) <= tolerance; | return Math.Abs(f1 - f2) <= tolerance; | ||||
} | } | ||||
public bool Equal(long[] l1, long[] l2) | |||||
{ | |||||
if (l1.Length != l2.Length) | |||||
return false; | |||||
for (var i = 0; i < l1.Length; i++) | |||||
{ | |||||
if (l1[i] != l2[i]) | |||||
return false; | |||||
} | |||||
return true; | |||||
} | |||||
public bool Equal(float[] f1, float[] f2) | public bool Equal(float[] f1, float[] f2) | ||||
{ | { | ||||
bool ret = false; | bool ret = false; | ||||