diff --git a/src/TensorFlowNET.Core/Eager/EagerRunner.RecordGradient.cs b/src/TensorFlowNET.Core/Eager/EagerRunner.RecordGradient.cs index 59d5fd03..2bdd65f5 100644 --- a/src/TensorFlowNET.Core/Eager/EagerRunner.RecordGradient.cs +++ b/src/TensorFlowNET.Core/Eager/EagerRunner.RecordGradient.cs @@ -80,6 +80,11 @@ namespace Tensorflow.Eager Tensor[] op_outputs) => (out_grads, unneeded_gradients) => { + if(!ops.gradientFunctions.ContainsKey(op_name)) + { + throw new Exception($"gradientFunctions not find op_name: {op_name}"); + } + if (ops.gradientFunctions[op_name] == null) return new Tensor[op_inputs.Length]; diff --git a/src/TensorFlowNET.Core/Gradients/nn_grad.cs b/src/TensorFlowNET.Core/Gradients/nn_grad.cs index a43a91b9..87646a9e 100644 --- a/src/TensorFlowNET.Core/Gradients/nn_grad.cs +++ b/src/TensorFlowNET.Core/Gradients/nn_grad.cs @@ -229,6 +229,37 @@ namespace Tensorflow.Gradients }; } + /// + /// Gradient function for Conv2D. + /// + /// + /// + /// + [RegisterGradient("DepthwiseConv2dNative")] + public static Tensor[] _DepthwiseConv2DGrad(Operation op, Tensor[] grads) + { + var dilations = op.get_attr_list("dilations"); + var strides = op.get_attr_list("strides"); + var padding = op.get_attr("padding"); + var explicit_paddings = op.get_attr_list("explicit_paddings"); + var data_format = op.get_attr("data_format"); + var shape = gen_array_ops.shape_n(new Tensor[] { op.inputs[0], op.inputs[1] }); + + return new Tensor[] + { + gen_nn_ops.depthwise_conv2d_native_backprop_input( + shape[0], op.inputs[1], grads[0], + strides, padding, explicit_paddings, + dilations: dilations, + data_format: data_format), + gen_nn_ops.depthwise_conv2d_native_backprop_filter(op.inputs[0], shape[1], grads[0], + strides, padding, + dilations: dilations, + explicit_paddings: explicit_paddings, + data_format: data_format) + }; + } + [RegisterGradient("FusedBatchNorm")] public static Tensor[] _FusedBatchNormGrad(Operation op, Tensor[] grads) => _BaseFusedBatchNormGrad(op, 0, grads); diff --git a/src/TensorFlowNET.Core/Keras/Layers/ILayersApi.cs b/src/TensorFlowNET.Core/Keras/Layers/ILayersApi.cs index 5e08eadc..a8141d35 100644 --- a/src/TensorFlowNET.Core/Keras/Layers/ILayersApi.cs +++ b/src/TensorFlowNET.Core/Keras/Layers/ILayersApi.cs @@ -95,6 +95,19 @@ namespace Tensorflow.Keras.Layers bool use_bias = true, string kernel_initializer = "glorot_uniform", string bias_initializer = "zeros"); + public ILayer DepthwiseConv2D(Shape kernel_size = null, + Shape strides = null, + string padding = "valid", + string data_format = null, + Shape dilation_rate = null, + int groups = 1, + int depth_multiplier = 1, + string activation = null, + bool use_bias = false, + string kernel_initializer = "glorot_uniform", + string bias_initializer = "zeros", + string depthwise_initializer = "glorot_uniform" + ); public ILayer Dense(int units); public ILayer Dense(int units, diff --git a/src/TensorFlowNET.Core/Tensors/tensor_util.cs b/src/TensorFlowNET.Core/Tensors/tensor_util.cs index e65c4850..f688d4d5 100644 --- a/src/TensorFlowNET.Core/Tensors/tensor_util.cs +++ b/src/TensorFlowNET.Core/Tensors/tensor_util.cs @@ -249,6 +249,9 @@ namespace Tensorflow case sbyte val: tensor_proto.IntVal.AddRange(new[] { (int)val }); break; + case byte val: + tensor_proto.IntVal.AddRange(new[] { (int)val }); + break; case int val: tensor_proto.IntVal.AddRange(new[] { val }); break; @@ -262,7 +265,7 @@ namespace Tensorflow tensor_proto.DoubleVal.AddRange(new[] { val }); break; default: - throw new Exception("make_tensor_proto Not Implemented"); + throw new Exception($"make_tensor_proto Not Implemented {values.GetType().Name}"); } } diff --git a/src/TensorFlowNET.Keras/Layers/Convolution/DepthwiseConv2D.cs b/src/TensorFlowNET.Keras/Layers/Convolution/DepthwiseConv2D.cs new file mode 100644 index 00000000..dae4a403 --- /dev/null +++ b/src/TensorFlowNET.Keras/Layers/Convolution/DepthwiseConv2D.cs @@ -0,0 +1,167 @@ +using System; +using System.Collections.Generic; +using System.Text; +using System; +using Tensorflow.Keras.ArgsDefinition; +using Tensorflow.Keras.Saving; +using Tensorflow.Common.Types; +using Tensorflow.Keras.Utils; +using Tensorflow.Operations; +using Newtonsoft.Json; +using System.Security.Cryptography; + +namespace Tensorflow.Keras.Layers +{ + public class DepthwiseConv2DArgs: Conv2DArgs + { + /// + /// depth_multiplier: The number of depthwise convolution output channels for + /// each input channel.The total number of depthwise convolution output + /// channels will be equal to `filters_in* depth_multiplier`. + /// + [JsonProperty("depth_multiplier")] + public int DepthMultiplier { get; set; } = 1; + + [JsonProperty("depthwise_initializer")] + public IInitializer DepthwiseInitializer { get; set; } + } + + public class DepthwiseConv2D : Conv2D + { + /// + /// depth_multiplier: The number of depthwise convolution output channels for + /// each input channel.The total number of depthwise convolution output + /// channels will be equal to `filters_in* depth_multiplier`. + /// + int DepthMultiplier = 1; + + IInitializer DepthwiseInitializer; + + int[] strides; + + int[] dilation_rate; + + string getDataFormat() + { + return data_format == "channels_first" ? "NCHW" : "NHWC"; + } + + static int _id = 1; + + public DepthwiseConv2D(DepthwiseConv2DArgs args):base(args) + { + args.Padding = args.Padding.ToUpper(); + + if(string.IsNullOrEmpty(args.Name)) + name = "DepthwiseConv2D_" + _id; + + this.DepthMultiplier = args.DepthMultiplier; + this.DepthwiseInitializer = args.DepthwiseInitializer; + + } + + public override void build(KerasShapesWrapper input_shape) + { + //base.build(input_shape); + + var shape = input_shape.ToSingleShape(); + + int channel_axis = data_format == "channels_first" ? 1 : -1; + var input_channel = channel_axis < 0 ? + shape.dims[shape.ndim + channel_axis] : + shape.dims[channel_axis]; + + var arg = args as DepthwiseConv2DArgs; + + if (arg.Strides.ndim != shape.ndim) + { + if (arg.Strides.ndim == 2) + { + this.strides = new int[] { 1, (int)arg.Strides[0], (int)arg.Strides[1], 1 }; + } + else + { + this.strides = conv_utils.normalize_tuple(new int[] { (int)arg.Strides[0] }, shape.ndim, "strides"); + } + } + else + { + this.strides = arg.Strides.dims.Select(o=>(int)(o)).ToArray(); + } + + if (arg.DilationRate.ndim != shape.ndim) + { + this.dilation_rate = conv_utils.normalize_tuple(new int[] { (int)arg.DilationRate[0] }, shape.ndim, "dilation_rate"); + } + + long channel_data = data_format == "channels_first" ? shape[0] : shape[shape.Length - 1]; + + var depthwise_kernel_shape = this.kernel_size.dims.concat(new long[] { + channel_data, + this.DepthMultiplier + }); + + this.kernel = this.add_weight( + shape: depthwise_kernel_shape, + initializer: this.DepthwiseInitializer != null ? this.DepthwiseInitializer : this.kernel_initializer, + name: "depthwise_kernel", + trainable: true, + dtype: DType, + regularizer: this.kernel_regularizer + ); + + var axes = new Dictionary(); + axes.Add(-1, (int)input_channel); + inputSpec = new InputSpec(min_ndim: rank + 2, axes: axes); + + + if (use_bias) + { + bias = add_weight(name: "bias", + shape: ((int)channel_data), + initializer: bias_initializer, + trainable: true, + dtype: DType); + } + + built = true; + _buildInputShape = input_shape; + } + + protected override Tensors Call(Tensors inputs, Tensors state = null, + bool? training = false, IOptionalArgs? optional_args = null) + { + Tensor outputs = null; + + outputs = gen_nn_ops.depthwise_conv2d_native( + inputs, + filter: this.kernel.AsTensor(), + strides: this.strides, + padding: this.padding, + dilations: this.dilation_rate, + data_format: this.getDataFormat(), + name: name + ); + + if (use_bias) + { + if (data_format == "channels_first") + { + throw new NotImplementedException("call channels_first"); + } + else + { + outputs = gen_nn_ops.bias_add(outputs, ops.convert_to_tensor(bias), + data_format: this.getDataFormat(), name: name); + } + } + + if (activation != null) + outputs = activation.Apply(outputs); + + + return outputs; + } + + } +} \ No newline at end of file diff --git a/src/TensorFlowNET.Keras/Layers/LayersApi.cs b/src/TensorFlowNET.Keras/Layers/LayersApi.cs index 928e7e33..95828fbf 100644 --- a/src/TensorFlowNET.Keras/Layers/LayersApi.cs +++ b/src/TensorFlowNET.Keras/Layers/LayersApi.cs @@ -210,6 +210,38 @@ namespace Tensorflow.Keras.Layers Activation = keras.activations.GetActivationFromName(activation) }); + public ILayer DepthwiseConv2D(Shape kernel_size = null, + Shape strides = null, + string padding = "valid", + string data_format = null, + Shape dilation_rate = null, + int groups = 1, + int depth_multiplier = 1, + string activation = null, + bool use_bias = false, + string kernel_initializer = "glorot_uniform", + string bias_initializer = "zeros", + string depthwise_initializer = "glorot_uniform" + ) + => new DepthwiseConv2D(new DepthwiseConv2DArgs + { + Rank = 2, + Filters = 1, + KernelSize = (kernel_size == null) ? (5, 5) : kernel_size, + Strides = strides == null ? (1) : strides, + Padding = padding, + DepthMultiplier = depth_multiplier, + DataFormat = data_format, + DilationRate = dilation_rate == null ? (1) : dilation_rate, + Groups = groups, + UseBias = use_bias, + KernelInitializer = GetInitializerByName(kernel_initializer), + DepthwiseInitializer = GetInitializerByName(depthwise_initializer == null ? kernel_initializer : depthwise_initializer), + BiasInitializer = GetInitializerByName(bias_initializer), + Activation = keras.activations.GetActivationFromName(activation), + }); + + /// /// Transposed convolution layer (sometimes called Deconvolution). /// diff --git a/test/TensorFlowNET.Keras.UnitTest/EagerModeTestBase.cs b/test/TensorFlowNET.Keras.UnitTest/EagerModeTestBase.cs index c7eab364..635f13a5 100644 --- a/test/TensorFlowNET.Keras.UnitTest/EagerModeTestBase.cs +++ b/test/TensorFlowNET.Keras.UnitTest/EagerModeTestBase.cs @@ -33,6 +33,40 @@ namespace Tensorflow.Keras.UnitTest return ret; } + + public void AssertArray(int[] f1, int[] f2) + { + bool ret = false; + for (var i = 0; i < f1.Length; i++) + { + ret = f1[i] == f2[i]; + if (!ret) + break; + } + + if (!ret) + { + Assert.Fail($"Array not Equal:[{string.Join(",", f1)}] [{string.Join(",", f2)}]"); + } + } + + public void AssertArray(float[] f1, float[] f2) + { + bool ret = false; + var tolerance = .00001f; + for (var i = 0; i < f1.Length; i++) + { + ret = Math.Abs(f1[i] - f2[i]) <= tolerance; + if (!ret) + break; + } + + if (!ret) + { + Assert.Fail($"Array float not Equal:[{string.Join(",", f1)}] [{string.Join(",", f2)}]"); + } + } + public bool Equal(double[] d1, double[] d2) { bool ret = false; diff --git a/test/TensorFlowNET.Keras.UnitTest/Layers/Layers.Convolution.Test.cs b/test/TensorFlowNET.Keras.UnitTest/Layers/Layers.Convolution.Test.cs index 997dcb4f..15c6e80f 100644 --- a/test/TensorFlowNET.Keras.UnitTest/Layers/Layers.Convolution.Test.cs +++ b/test/TensorFlowNET.Keras.UnitTest/Layers/Layers.Convolution.Test.cs @@ -1,6 +1,8 @@ using Microsoft.VisualStudio.TestTools.UnitTesting; +using System.Linq; using Tensorflow.NumPy; using static Tensorflow.KerasApi; +using static Tensorflow.Binding; namespace Tensorflow.Keras.UnitTest.Layers { @@ -193,5 +195,128 @@ namespace Tensorflow.Keras.UnitTest.Layers Assert.AreEqual(x.dims[2], y.shape[2]); Assert.AreEqual(filters, y.shape[3]); } + + + [TestMethod] + public void BasicDepthwiseConv2D() + { + var conv = keras.layers.DepthwiseConv2D(kernel_size:3, strides:1, activation: null, + padding:"same", depthwise_initializer: "ones"); + + var x = np.arange(2 * 9* 9* 3).reshape((2, 9, 9, 3)); + var x2 = ops.convert_to_tensor(x, TF_DataType.TF_FLOAT); + + var y = conv.Apply(x2); + + print($"input:{x2.shape} DepthwiseConv2D.out: {y.shape}"); + + + Assert.AreEqual(4, y.shape.ndim); + var arr = y.numpy().reshape((2, 9, 9, 3)); + + AssertArray(x[new int[] { 1, 1, 1 }].ToArray(), new int[] { 273, 274, 275 }); + AssertArray(arr[new int[] { 1, 1, 1 }].ToArray(), new float[] { 2457f, 2466f, 2475f }); + + var bn = keras.layers.BatchNormalization(); + var y2 = bn.Apply(y); + arr = y2.numpy().ToArray(); + + double delta = 0.0001; // 误差范围 + + Assert.AreEqual(arr[0], 59.97002f, delta); + Assert.AreEqual(arr[1], 63.96802f, delta); + } + + + [TestMethod] + public void BasicDepthwiseConv2D_strides_2() + { + var conv = keras.layers.DepthwiseConv2D(kernel_size: 3, strides: (1, 2, 2, 1), activation: null, + padding: "same", depthwise_initializer: "ones"); + + var x = np.arange(2 * 9 * 9 * 3).reshape((2, 9, 9, 3)); + var x2 = ops.convert_to_tensor(x, TF_DataType.TF_FLOAT); + + var y = conv.Apply(x2); + + print($"input:{x2.shape} DepthwiseConv2D.out: {y.shape}"); + + Assert.AreEqual(4, y.shape.ndim); + var arr = y.numpy().reshape((2, 5, 5, 3)); + + AssertArray(x[new int[] { 1, 1, 1 }].ToArray(), new int[] { 273, 274, 275 }); + AssertArray(arr[new int[] { 1, 1, 1 }].ToArray(), new float[] { 2727f, 2736f, 2745f }); + + var bn = keras.layers.BatchNormalization(); + var y2 = bn.Apply(y); + arr = y2.numpy().ToArray(); + + double delta = 0.0001; // 误差范围 + + Assert.AreEqual(arr[0], 59.97002f, delta); + Assert.AreEqual(arr[1], 63.96802f, delta); + } + + + + [TestMethod] + public void BasicDepthwiseConv2D_strides_3() + { + var conv = keras.layers.DepthwiseConv2D(kernel_size: 3, strides: 3, activation: null, + padding: "same", depthwise_initializer: "ones"); + + var x = np.arange(2 * 9 * 9 * 3).reshape((2, 9, 9, 3)); + var x2 = ops.convert_to_tensor(x, TF_DataType.TF_FLOAT); + + var y = conv.Apply(x2); + + print($"input:{x2.shape} DepthwiseConv2D.out: {y.shape}"); + + Assert.AreEqual(4, y.shape.ndim); + var arr = y.numpy().reshape((2, 3, 3, 3)); + + AssertArray(x[new int[] { 1, 1, 1 }].ToArray(), new int[] { 273, 274, 275 }); + AssertArray(arr[new int[] { 1, 1, 1 }].ToArray(), new float[] { 3267f, 3276f, 3285f }); + + var bn = keras.layers.BatchNormalization(); + var y2 = bn.Apply(y); + arr = y2.numpy().ToArray(); + + double delta = 0.0001; // 误差范围 + + Assert.AreEqual(arr[0], 269.86508f, delta); + Assert.AreEqual(arr[1], 278.8606f, delta); + + } + [TestMethod] + public void BasicDepthwiseConv2D_UseBias() + { + var conv = keras.layers.DepthwiseConv2D(kernel_size: 3, strides: 1, activation: null, + use_bias: true, padding: "same", + depthwise_initializer: "ones", + bias_initializer:"ones" + ); + + var weight = conv.get_weights(); + + var x = np.arange(9 * 9 * 3).reshape((1, 9, 9, 3)); + var x2 = ops.convert_to_tensor(x, TF_DataType.TF_FLOAT); + var y = conv.Apply(x2); + + Assert.AreEqual(4, y.shape.ndim); + var arr = y.numpy().ToArray(); + + Assert.AreEqual(arr[0], 61f); + Assert.AreEqual(arr[1], 65f); + + var bn = keras.layers.BatchNormalization(); + var y2 = bn.Apply(y); + arr = y2.numpy().ToArray(); + + double delta = 0.0001; // 误差范围 + + Assert.AreEqual(arr[0], 60.96952f, delta); + Assert.AreEqual(arr[1], 64.96752f, delta); + } } } diff --git a/test/TensorFlowNET.UnitTest/EagerModeTestBase.cs b/test/TensorFlowNET.UnitTest/EagerModeTestBase.cs index d08f4e50..b7b9ae12 100644 --- a/test/TensorFlowNET.UnitTest/EagerModeTestBase.cs +++ b/test/TensorFlowNET.UnitTest/EagerModeTestBase.cs @@ -20,6 +20,20 @@ namespace TensorFlowNET.UnitTest return Math.Abs(f1 - f2) <= tolerance; } + public bool Equal(long[] l1, long[] l2) + { + if (l1.Length != l2.Length) + return false; + + for (var i = 0; i < l1.Length; i++) + { + if (l1[i] != l2[i]) + return false; + } + + return true; + } + public bool Equal(float[] f1, float[] f2) { bool ret = false;