Browse Source

Applications skeleton methods added

tags/v0.20
Deepak Battini 5 years ago
parent
commit
9a1798ce8c
13 changed files with 218 additions and 12 deletions
  1. +16
    -0
      src/TensorFlowNET.Keras/Applications/Densenet.cs
  2. +51
    -1
      src/TensorFlowNET.Keras/Applications/Efficientnet.cs
  3. +13
    -1
      src/TensorFlowNET.Keras/Applications/ImagenetUtils.cs
  4. +13
    -1
      src/TensorFlowNET.Keras/Applications/InceptionResnetV2.cs
  5. +10
    -1
      src/TensorFlowNET.Keras/Applications/InceptionV3.cs
  6. +9
    -1
      src/TensorFlowNET.Keras/Applications/Mobilenet.cs
  7. +12
    -1
      src/TensorFlowNET.Keras/Applications/MobilenetV2.cs
  8. +22
    -1
      src/TensorFlowNET.Keras/Applications/Nasnet.cs
  9. +32
    -1
      src/TensorFlowNET.Keras/Applications/Resnet.cs
  10. +16
    -1
      src/TensorFlowNET.Keras/Applications/ResnetV2.cs
  11. +8
    -1
      src/TensorFlowNET.Keras/Applications/Vgg16.cs
  12. +8
    -1
      src/TensorFlowNET.Keras/Applications/Vgg19.cs
  13. +8
    -1
      src/TensorFlowNET.Keras/Applications/Xception.cs

+ 16
- 0
src/TensorFlowNET.Keras/Applications/Densenet.cs View File

@@ -15,5 +15,21 @@ namespace Tensorflow.Keras.Applications
public static Model DenseNet(int blocks, bool include_top=true, string weights = "imagenet",
Tensor input_tensor = null, TensorShape input_shape = null,
string pooling = null, int classes = 1000) => throw new NotImplementedException();

public static Model DenseNet121(int blocks, bool include_top = true, string weights = "imagenet",
Tensor input_tensor = null, TensorShape input_shape = null,
string pooling = null, int classes = 1000) => throw new NotImplementedException();

public static Model DenseNet169(int blocks, bool include_top = true, string weights = "imagenet",
Tensor input_tensor = null, TensorShape input_shape = null,
string pooling = null, int classes = 1000) => throw new NotImplementedException();

public static Model DenseNet201(int blocks, bool include_top = true, string weights = "imagenet",
Tensor input_tensor = null, TensorShape input_shape = null,
string pooling = null, int classes = 1000) => throw new NotImplementedException();

public static Tensor preprocess_input(Tensor x, string data_format = null) => throw new NotImplementedException();

public static Tensor decode_predictions(Tensor preds, int top = 5) => throw new NotImplementedException();
}
}

+ 51
- 1
src/TensorFlowNET.Keras/Applications/Efficientnet.cs View File

@@ -4,7 +4,57 @@ using System.Text;

namespace Tensorflow.Keras.Applications
{
class Efficientnet
public class BlockArg
{

}

public class Efficientnet
{
public static Model EfficientNet(float width_coefficient, float depth_coefficient, int default_size, float dropout_rate = 0.2f,
float drop_connect_rate = 0.2f, int depth_divisor = 8, string activation = "swish",
BlockArg[] blocks_args = null, string model_name = "efficientnet", bool include_top = true,
string weights = "imagenet", Tensor input_tensor = null, TensorShape input_shape = null,
string pooling = null, int classes = 1000) => throw new NotImplementedException();

public static Tensor block(Tensor inputs, string activation= "swish", float drop_rate= 0f,string name= "",
int filters_in= 32, int filters_out= 16, int kernel_size= 3, int strides= 1,
int expand_ratio= 1, float se_ratio= 0, bool id_skip= true) => throw new NotImplementedException();

public static Model EfficientNetB0(bool include_top = true, string weights = "imagenet",
Tensor input_tensor = null, TensorShape input_shape = null,
string pooling = null, int classes = 1000) => throw new NotImplementedException();

public static Model EfficientNetB1(bool include_top = true, string weights = "imagenet",
Tensor input_tensor = null, TensorShape input_shape = null,
string pooling = null, int classes = 1000) => throw new NotImplementedException();

public static Model EfficientNetB2(bool include_top = true, string weights = "imagenet",
Tensor input_tensor = null, TensorShape input_shape = null,
string pooling = null, int classes = 1000) => throw new NotImplementedException();

public static Model EfficientNetB3(bool include_top = true, string weights = "imagenet",
Tensor input_tensor = null, TensorShape input_shape = null,
string pooling = null, int classes = 1000) => throw new NotImplementedException();

public static Model EfficientNetB4(bool include_top = true, string weights = "imagenet",
Tensor input_tensor = null, TensorShape input_shape = null,
string pooling = null, int classes = 1000) => throw new NotImplementedException();

public static Model EfficientNetB5(bool include_top = true, string weights = "imagenet",
Tensor input_tensor = null, TensorShape input_shape = null,
string pooling = null, int classes = 1000) => throw new NotImplementedException();

public static Model EfficientNetB6(bool include_top = true, string weights = "imagenet",
Tensor input_tensor = null, TensorShape input_shape = null,
string pooling = null, int classes = 1000) => throw new NotImplementedException();

public static Model EfficientNetB7(bool include_top = true, string weights = "imagenet",
Tensor input_tensor = null, TensorShape input_shape = null,
string pooling = null, int classes = 1000) => throw new NotImplementedException();

public static Tensor preprocess_input(Tensor x, string data_format = null) => throw new NotImplementedException();

public static Tensor decode_predictions(Tensor preds, int top = 5) => throw new NotImplementedException();
}
}

+ 13
- 1
src/TensorFlowNET.Keras/Applications/ImagenetUtils.cs View File

@@ -4,7 +4,19 @@ using System.Text;

namespace Tensorflow.Keras.Applications
{
class ImagenetUtils
public class ImagenetUtils
{
public static Tensor preprocess_input(Tensor x, string data_format= null, string mode= "caffe") => throw new NotImplementedException();
public static Tensor decode_predictions(Tensor preds, int top= 5) => throw new NotImplementedException();

public static Tensor _preprocess_numpy_input(Tensor x, string data_format, string mode) => throw new NotImplementedException();

public static Tensor _preprocess_symbolic_input(Tensor x, string data_format, string mode) => throw new NotImplementedException();

public static TensorShape obtain_input_shape(TensorShape input_shape, int default_size, int min_size,
string data_format, bool require_flatten, string weights= null) => throw new NotImplementedException();

public static ((int, int), (int, int)) correct_pad(Tensor inputs, (int, int) kernel_size) => throw new NotImplementedException();
}
}

+ 13
- 1
src/TensorFlowNET.Keras/Applications/InceptionResnetV2.cs View File

@@ -4,7 +4,19 @@ using System.Text;

namespace Tensorflow.Keras.Applications
{
class InceptionResnetV2
public class InceptionResnetV2
{
public static Model InceptionResNetV2(bool include_top = true, string weights = "imagenet",
Tensor input_tensor = null, TensorShape input_shape = null,
string pooling = null, int classes = 1000) => throw new NotImplementedException();

public static Tensor conv2d_bn(Tensor x, int filters, (int, int) kernel_size, (int, int) strides, string padding= "same",
string activation= "relu", bool use_bias= false, string name= null) => throw new NotImplementedException();

public static Tensor inception_resnet_block(Tensor x, float scale, string block_type, int block_idx, string activation= "relu") => throw new NotImplementedException();

public static Tensor preprocess_input(Tensor x, string data_format = null) => throw new NotImplementedException();

public static Tensor decode_predictions(Tensor preds, int top = 5) => throw new NotImplementedException();
}
}

+ 10
- 1
src/TensorFlowNET.Keras/Applications/InceptionV3.cs View File

@@ -4,7 +4,16 @@ using System.Text;

namespace Tensorflow.Keras.Applications
{
class InceptionV3
public class InceptionV3
{
public static Model Inceptionv3(bool include_top = true, string weights = "imagenet",
Tensor input_tensor = null, TensorShape input_shape = null,
string pooling = null, int classes = 1000) => throw new NotImplementedException();

public static Tensor conv2d_bn(Tensor x, int filters, int num_row, int num_col, string padding = "same", (int, int)? strides = null, string name = null) => throw new NotImplementedException();

public static Tensor preprocess_input(Tensor x, string data_format = null) => throw new NotImplementedException();

public static Tensor decode_predictions(Tensor preds, int top = 5) => throw new NotImplementedException();
}
}

+ 9
- 1
src/TensorFlowNET.Keras/Applications/Mobilenet.cs View File

@@ -4,7 +4,15 @@ using System.Text;

namespace Tensorflow.Keras.Applications
{
class Mobilenet
public class Mobilenet
{
public static Model MobileNet(TensorShape input_shape= null, float alpha= 1.0f, int depth_multiplier= 1, float dropout= 1e-3f,
bool include_top= true, string weights= "imagenet", Tensor input_tensor= null, string pooling= null, int classes= 1000) => throw new NotImplementedException();

public static Tensor conv2d_bn(Tensor x, int filters, float alpha, (int, int)? kernel = null, (int, int)? strides = null) => throw new NotImplementedException();

public static Tensor preprocess_input(Tensor x, string data_format = null) => throw new NotImplementedException();

public static Tensor decode_predictions(Tensor preds, int top = 5) => throw new NotImplementedException();
}
}

+ 12
- 1
src/TensorFlowNET.Keras/Applications/MobilenetV2.cs View File

@@ -4,7 +4,18 @@ using System.Text;

namespace Tensorflow.Keras.Applications
{
class MobilenetV2
public class MobilenetV2
{
public static Model MobileNetV2(TensorShape input_shape = null, float alpha = 1.0f, bool include_top = true,
string weights = "imagenet", Tensor input_tensor = null, string pooling = null,
int classes = 1000) => throw new NotImplementedException();

public static Tensor _inverted_res_block(Tensor inputs, int expansion, (int, int) stride, float alpha, int filters, string block_id) => throw new NotImplementedException();

public static Tensor _make_divisible(Tensor v, Tensor divisor, Tensor min_value= null) => throw new NotImplementedException();

public static Tensor preprocess_input(Tensor x, string data_format = null) => throw new NotImplementedException();

public static Tensor decode_predictions(Tensor preds, int top = 5) => throw new NotImplementedException();
}
}

+ 22
- 1
src/TensorFlowNET.Keras/Applications/Nasnet.cs View File

@@ -4,7 +4,28 @@ using System.Text;

namespace Tensorflow.Keras.Applications
{
class Nasnet
public class Nasnet
{
public static Model NASNet(TensorShape input_shape = null, int penultimate_filters = 4032, int num_blocks = 6, int stem_block_filters = 96,
bool skip_reduction = true, int filter_multiplier = 2, bool include_top = true, string weights = null,
Tensor input_tensor = null, string pooling = null, int classes = 1000, int? default_size = null) => throw new NotImplementedException();

public static Model NASNetMobile(TensorShape input_shape = null, bool include_top = true, string weights = "imagenet",
Tensor input_tensor = null, string pooling = null, int classes = 1000) => throw new NotImplementedException();

public static Model NASNetLarge(TensorShape input_shape = null, bool include_top = true, string weights = "imagenet",
Tensor input_tensor = null, string pooling = null, int classes = 1000) => throw new NotImplementedException();

public static Tensor _separable_conv_block(Tensor ip, int filters, (int, int)? kernel_size= null, (int, int)? strides= null, string block_id= null) => throw new NotImplementedException();

public static Tensor _adjust_block(Tensor p, Tensor ip, int filters, string block_id= null) => throw new NotImplementedException();

public static Tensor _normal_a_cell(Tensor p, Tensor ip, int filters, string block_id = null) => throw new NotImplementedException();

public static Tensor _reduction_a_cell(Tensor p, Tensor ip, int filters, string block_id = null) => throw new NotImplementedException();

public static Tensor preprocess_input(Tensor x, string data_format = null) => throw new NotImplementedException();

public static Tensor decode_predictions(Tensor preds, int top = 5) => throw new NotImplementedException();
}
}

+ 32
- 1
src/TensorFlowNET.Keras/Applications/Resnet.cs View File

@@ -4,7 +4,38 @@ using System.Text;

namespace Tensorflow.Keras.Applications
{
class Resnet
public class Resnet
{
public static Model ResNet(Func<Tensor, Tensor> stack_fn, bool preact, bool use_bias, string model_name= "resnet", bool include_top= true,
string weights= "imagenet", Tensor input_tensor= null, TensorShape input_shape= null, string pooling= null,
int classes= 1000) => throw new NotImplementedException();

public static Tensor block1(Tensor x, int filters, int kernel_size= 3, int stride= 1, bool conv_shortcut= true, string name= null) => throw new NotImplementedException();

public static Tensor stack1(Tensor x, int filters, int blocks, int stride1 = 2, string name = null) => throw new NotImplementedException();

public static Tensor block2(Tensor x, int filters, int kernel_size = 3, int stride = 1, bool conv_shortcut = true, string name = null) => throw new NotImplementedException();

public static Tensor stack2(Tensor x, int filters, int blocks, int stride1 = 2, string name = null) => throw new NotImplementedException();

public static Tensor block3(Tensor x, int filters, int kernel_size = 3, int stride = 1, int groups = 32, bool conv_shortcut = true, string name = null) => throw new NotImplementedException();

public static Tensor stack3(Tensor x, int filters, int blocks, int stride1 = 2, int groups = 32, string name = null) => throw new NotImplementedException();

public static Model ResNet50(bool include_top = true, string weights = "imagenet",
Tensor input_tensor = null, TensorShape input_shape = null,
string pooling = null, int classes = 1000) => throw new NotImplementedException();

public static Model ResNet101(bool include_top = true, string weights = "imagenet",
Tensor input_tensor = null, TensorShape input_shape = null,
string pooling = null, int classes = 1000) => throw new NotImplementedException();

public static Model ResNet152(bool include_top = true, string weights = "imagenet",
Tensor input_tensor = null, TensorShape input_shape = null,
string pooling = null, int classes = 1000) => throw new NotImplementedException();

public static Tensor preprocess_input(Tensor x, string data_format = null) => throw new NotImplementedException();

public static Tensor decode_predictions(Tensor preds, int top = 5) => throw new NotImplementedException();
}
}

+ 16
- 1
src/TensorFlowNET.Keras/Applications/ResnetV2.cs View File

@@ -4,7 +4,22 @@ using System.Text;

namespace Tensorflow.Keras.Applications
{
class ResnetV2
public class ResnetV2
{
public static Model ResNet50V2(bool include_top = true, string weights = "imagenet",
Tensor input_tensor = null, TensorShape input_shape = null,
string pooling = null, int classes = 1000) => throw new NotImplementedException();

public static Model ResNet101V2(bool include_top = true, string weights = "imagenet",
Tensor input_tensor = null, TensorShape input_shape = null,
string pooling = null, int classes = 1000) => throw new NotImplementedException();

public static Model ResNet152V2(bool include_top = true, string weights = "imagenet",
Tensor input_tensor = null, TensorShape input_shape = null,
string pooling = null, int classes = 1000) => throw new NotImplementedException();

public static Tensor preprocess_input(Tensor x, string data_format = null) => throw new NotImplementedException();

public static Tensor decode_predictions(Tensor preds, int top = 5) => throw new NotImplementedException();
}
}

+ 8
- 1
src/TensorFlowNET.Keras/Applications/Vgg16.cs View File

@@ -4,7 +4,14 @@ using System.Text;

namespace Tensorflow.Keras.Applications
{
class Vgg16
public class Vgg16
{
public static Model VGG16(bool include_top = true, string weights = "imagenet",
Tensor input_tensor = null, TensorShape input_shape = null,
string pooling = null, int classes = 1000) => throw new NotImplementedException();

public static Tensor preprocess_input(Tensor x, string data_format = null) => throw new NotImplementedException();

public static Tensor decode_predictions(Tensor preds, int top = 5) => throw new NotImplementedException();
}
}

+ 8
- 1
src/TensorFlowNET.Keras/Applications/Vgg19.cs View File

@@ -4,7 +4,14 @@ using System.Text;

namespace Tensorflow.Keras.Applications
{
class Vgg19
public class Vgg19
{
public static Model VGG19(bool include_top = true, string weights = "imagenet",
Tensor input_tensor = null, TensorShape input_shape = null,
string pooling = null, int classes = 1000) => throw new NotImplementedException();

public static Tensor preprocess_input(Tensor x, string data_format = null) => throw new NotImplementedException();

public static Tensor decode_predictions(Tensor preds, int top = 5) => throw new NotImplementedException();
}
}

+ 8
- 1
src/TensorFlowNET.Keras/Applications/Xception.cs View File

@@ -4,7 +4,14 @@ using System.Text;

namespace Tensorflow.Keras.Applications
{
class Xception
public class Xception
{
public static Model XCeption(bool include_top = true, string weights = "imagenet",
Tensor input_tensor = null, TensorShape input_shape = null,
string pooling = null, int classes = 1000) => throw new NotImplementedException();

public static Tensor preprocess_input(Tensor x, string data_format = null) => throw new NotImplementedException();

public static Tensor decode_predictions(Tensor preds, int top = 5) => throw new NotImplementedException();
}
}

Loading…
Cancel
Save