@@ -15,5 +15,21 @@ namespace Tensorflow.Keras.Applications | |||||
public static Model DenseNet(int blocks, bool include_top=true, string weights = "imagenet", | public static Model DenseNet(int blocks, bool include_top=true, string weights = "imagenet", | ||||
Tensor input_tensor = null, TensorShape input_shape = null, | Tensor input_tensor = null, TensorShape input_shape = null, | ||||
string pooling = null, int classes = 1000) => throw new NotImplementedException(); | string pooling = null, int classes = 1000) => throw new NotImplementedException(); | ||||
public static Model DenseNet121(int blocks, bool include_top = true, string weights = "imagenet", | |||||
Tensor input_tensor = null, TensorShape input_shape = null, | |||||
string pooling = null, int classes = 1000) => throw new NotImplementedException(); | |||||
public static Model DenseNet169(int blocks, bool include_top = true, string weights = "imagenet", | |||||
Tensor input_tensor = null, TensorShape input_shape = null, | |||||
string pooling = null, int classes = 1000) => throw new NotImplementedException(); | |||||
public static Model DenseNet201(int blocks, bool include_top = true, string weights = "imagenet", | |||||
Tensor input_tensor = null, TensorShape input_shape = null, | |||||
string pooling = null, int classes = 1000) => throw new NotImplementedException(); | |||||
public static Tensor preprocess_input(Tensor x, string data_format = null) => throw new NotImplementedException(); | |||||
public static Tensor decode_predictions(Tensor preds, int top = 5) => throw new NotImplementedException(); | |||||
} | } | ||||
} | } |
@@ -4,7 +4,57 @@ using System.Text; | |||||
namespace Tensorflow.Keras.Applications | namespace Tensorflow.Keras.Applications | ||||
{ | { | ||||
class Efficientnet | |||||
public class BlockArg | |||||
{ | { | ||||
} | |||||
public class Efficientnet | |||||
{ | |||||
public static Model EfficientNet(float width_coefficient, float depth_coefficient, int default_size, float dropout_rate = 0.2f, | |||||
float drop_connect_rate = 0.2f, int depth_divisor = 8, string activation = "swish", | |||||
BlockArg[] blocks_args = null, string model_name = "efficientnet", bool include_top = true, | |||||
string weights = "imagenet", Tensor input_tensor = null, TensorShape input_shape = null, | |||||
string pooling = null, int classes = 1000) => throw new NotImplementedException(); | |||||
public static Tensor block(Tensor inputs, string activation= "swish", float drop_rate= 0f,string name= "", | |||||
int filters_in= 32, int filters_out= 16, int kernel_size= 3, int strides= 1, | |||||
int expand_ratio= 1, float se_ratio= 0, bool id_skip= true) => throw new NotImplementedException(); | |||||
public static Model EfficientNetB0(bool include_top = true, string weights = "imagenet", | |||||
Tensor input_tensor = null, TensorShape input_shape = null, | |||||
string pooling = null, int classes = 1000) => throw new NotImplementedException(); | |||||
public static Model EfficientNetB1(bool include_top = true, string weights = "imagenet", | |||||
Tensor input_tensor = null, TensorShape input_shape = null, | |||||
string pooling = null, int classes = 1000) => throw new NotImplementedException(); | |||||
public static Model EfficientNetB2(bool include_top = true, string weights = "imagenet", | |||||
Tensor input_tensor = null, TensorShape input_shape = null, | |||||
string pooling = null, int classes = 1000) => throw new NotImplementedException(); | |||||
public static Model EfficientNetB3(bool include_top = true, string weights = "imagenet", | |||||
Tensor input_tensor = null, TensorShape input_shape = null, | |||||
string pooling = null, int classes = 1000) => throw new NotImplementedException(); | |||||
public static Model EfficientNetB4(bool include_top = true, string weights = "imagenet", | |||||
Tensor input_tensor = null, TensorShape input_shape = null, | |||||
string pooling = null, int classes = 1000) => throw new NotImplementedException(); | |||||
public static Model EfficientNetB5(bool include_top = true, string weights = "imagenet", | |||||
Tensor input_tensor = null, TensorShape input_shape = null, | |||||
string pooling = null, int classes = 1000) => throw new NotImplementedException(); | |||||
public static Model EfficientNetB6(bool include_top = true, string weights = "imagenet", | |||||
Tensor input_tensor = null, TensorShape input_shape = null, | |||||
string pooling = null, int classes = 1000) => throw new NotImplementedException(); | |||||
public static Model EfficientNetB7(bool include_top = true, string weights = "imagenet", | |||||
Tensor input_tensor = null, TensorShape input_shape = null, | |||||
string pooling = null, int classes = 1000) => throw new NotImplementedException(); | |||||
public static Tensor preprocess_input(Tensor x, string data_format = null) => throw new NotImplementedException(); | |||||
public static Tensor decode_predictions(Tensor preds, int top = 5) => throw new NotImplementedException(); | |||||
} | } | ||||
} | } |
@@ -4,7 +4,19 @@ using System.Text; | |||||
namespace Tensorflow.Keras.Applications | namespace Tensorflow.Keras.Applications | ||||
{ | { | ||||
class ImagenetUtils | |||||
public class ImagenetUtils | |||||
{ | { | ||||
public static Tensor preprocess_input(Tensor x, string data_format= null, string mode= "caffe") => throw new NotImplementedException(); | |||||
public static Tensor decode_predictions(Tensor preds, int top= 5) => throw new NotImplementedException(); | |||||
public static Tensor _preprocess_numpy_input(Tensor x, string data_format, string mode) => throw new NotImplementedException(); | |||||
public static Tensor _preprocess_symbolic_input(Tensor x, string data_format, string mode) => throw new NotImplementedException(); | |||||
public static TensorShape obtain_input_shape(TensorShape input_shape, int default_size, int min_size, | |||||
string data_format, bool require_flatten, string weights= null) => throw new NotImplementedException(); | |||||
public static ((int, int), (int, int)) correct_pad(Tensor inputs, (int, int) kernel_size) => throw new NotImplementedException(); | |||||
} | } | ||||
} | } |
@@ -4,7 +4,19 @@ using System.Text; | |||||
namespace Tensorflow.Keras.Applications | namespace Tensorflow.Keras.Applications | ||||
{ | { | ||||
class InceptionResnetV2 | |||||
public class InceptionResnetV2 | |||||
{ | { | ||||
public static Model InceptionResNetV2(bool include_top = true, string weights = "imagenet", | |||||
Tensor input_tensor = null, TensorShape input_shape = null, | |||||
string pooling = null, int classes = 1000) => throw new NotImplementedException(); | |||||
public static Tensor conv2d_bn(Tensor x, int filters, (int, int) kernel_size, (int, int) strides, string padding= "same", | |||||
string activation= "relu", bool use_bias= false, string name= null) => throw new NotImplementedException(); | |||||
public static Tensor inception_resnet_block(Tensor x, float scale, string block_type, int block_idx, string activation= "relu") => throw new NotImplementedException(); | |||||
public static Tensor preprocess_input(Tensor x, string data_format = null) => throw new NotImplementedException(); | |||||
public static Tensor decode_predictions(Tensor preds, int top = 5) => throw new NotImplementedException(); | |||||
} | } | ||||
} | } |
@@ -4,7 +4,16 @@ using System.Text; | |||||
namespace Tensorflow.Keras.Applications | namespace Tensorflow.Keras.Applications | ||||
{ | { | ||||
class InceptionV3 | |||||
public class InceptionV3 | |||||
{ | { | ||||
public static Model Inceptionv3(bool include_top = true, string weights = "imagenet", | |||||
Tensor input_tensor = null, TensorShape input_shape = null, | |||||
string pooling = null, int classes = 1000) => throw new NotImplementedException(); | |||||
public static Tensor conv2d_bn(Tensor x, int filters, int num_row, int num_col, string padding = "same", (int, int)? strides = null, string name = null) => throw new NotImplementedException(); | |||||
public static Tensor preprocess_input(Tensor x, string data_format = null) => throw new NotImplementedException(); | |||||
public static Tensor decode_predictions(Tensor preds, int top = 5) => throw new NotImplementedException(); | |||||
} | } | ||||
} | } |
@@ -4,7 +4,15 @@ using System.Text; | |||||
namespace Tensorflow.Keras.Applications | namespace Tensorflow.Keras.Applications | ||||
{ | { | ||||
class Mobilenet | |||||
public class Mobilenet | |||||
{ | { | ||||
public static Model MobileNet(TensorShape input_shape= null, float alpha= 1.0f, int depth_multiplier= 1, float dropout= 1e-3f, | |||||
bool include_top= true, string weights= "imagenet", Tensor input_tensor= null, string pooling= null, int classes= 1000) => throw new NotImplementedException(); | |||||
public static Tensor conv2d_bn(Tensor x, int filters, float alpha, (int, int)? kernel = null, (int, int)? strides = null) => throw new NotImplementedException(); | |||||
public static Tensor preprocess_input(Tensor x, string data_format = null) => throw new NotImplementedException(); | |||||
public static Tensor decode_predictions(Tensor preds, int top = 5) => throw new NotImplementedException(); | |||||
} | } | ||||
} | } |
@@ -4,7 +4,18 @@ using System.Text; | |||||
namespace Tensorflow.Keras.Applications | namespace Tensorflow.Keras.Applications | ||||
{ | { | ||||
class MobilenetV2 | |||||
public class MobilenetV2 | |||||
{ | { | ||||
public static Model MobileNetV2(TensorShape input_shape = null, float alpha = 1.0f, bool include_top = true, | |||||
string weights = "imagenet", Tensor input_tensor = null, string pooling = null, | |||||
int classes = 1000) => throw new NotImplementedException(); | |||||
public static Tensor _inverted_res_block(Tensor inputs, int expansion, (int, int) stride, float alpha, int filters, string block_id) => throw new NotImplementedException(); | |||||
public static Tensor _make_divisible(Tensor v, Tensor divisor, Tensor min_value= null) => throw new NotImplementedException(); | |||||
public static Tensor preprocess_input(Tensor x, string data_format = null) => throw new NotImplementedException(); | |||||
public static Tensor decode_predictions(Tensor preds, int top = 5) => throw new NotImplementedException(); | |||||
} | } | ||||
} | } |
@@ -4,7 +4,28 @@ using System.Text; | |||||
namespace Tensorflow.Keras.Applications | namespace Tensorflow.Keras.Applications | ||||
{ | { | ||||
class Nasnet | |||||
public class Nasnet | |||||
{ | { | ||||
public static Model NASNet(TensorShape input_shape = null, int penultimate_filters = 4032, int num_blocks = 6, int stem_block_filters = 96, | |||||
bool skip_reduction = true, int filter_multiplier = 2, bool include_top = true, string weights = null, | |||||
Tensor input_tensor = null, string pooling = null, int classes = 1000, int? default_size = null) => throw new NotImplementedException(); | |||||
public static Model NASNetMobile(TensorShape input_shape = null, bool include_top = true, string weights = "imagenet", | |||||
Tensor input_tensor = null, string pooling = null, int classes = 1000) => throw new NotImplementedException(); | |||||
public static Model NASNetLarge(TensorShape input_shape = null, bool include_top = true, string weights = "imagenet", | |||||
Tensor input_tensor = null, string pooling = null, int classes = 1000) => throw new NotImplementedException(); | |||||
public static Tensor _separable_conv_block(Tensor ip, int filters, (int, int)? kernel_size= null, (int, int)? strides= null, string block_id= null) => throw new NotImplementedException(); | |||||
public static Tensor _adjust_block(Tensor p, Tensor ip, int filters, string block_id= null) => throw new NotImplementedException(); | |||||
public static Tensor _normal_a_cell(Tensor p, Tensor ip, int filters, string block_id = null) => throw new NotImplementedException(); | |||||
public static Tensor _reduction_a_cell(Tensor p, Tensor ip, int filters, string block_id = null) => throw new NotImplementedException(); | |||||
public static Tensor preprocess_input(Tensor x, string data_format = null) => throw new NotImplementedException(); | |||||
public static Tensor decode_predictions(Tensor preds, int top = 5) => throw new NotImplementedException(); | |||||
} | } | ||||
} | } |
@@ -4,7 +4,38 @@ using System.Text; | |||||
namespace Tensorflow.Keras.Applications | namespace Tensorflow.Keras.Applications | ||||
{ | { | ||||
class Resnet | |||||
public class Resnet | |||||
{ | { | ||||
public static Model ResNet(Func<Tensor, Tensor> stack_fn, bool preact, bool use_bias, string model_name= "resnet", bool include_top= true, | |||||
string weights= "imagenet", Tensor input_tensor= null, TensorShape input_shape= null, string pooling= null, | |||||
int classes= 1000) => throw new NotImplementedException(); | |||||
public static Tensor block1(Tensor x, int filters, int kernel_size= 3, int stride= 1, bool conv_shortcut= true, string name= null) => throw new NotImplementedException(); | |||||
public static Tensor stack1(Tensor x, int filters, int blocks, int stride1 = 2, string name = null) => throw new NotImplementedException(); | |||||
public static Tensor block2(Tensor x, int filters, int kernel_size = 3, int stride = 1, bool conv_shortcut = true, string name = null) => throw new NotImplementedException(); | |||||
public static Tensor stack2(Tensor x, int filters, int blocks, int stride1 = 2, string name = null) => throw new NotImplementedException(); | |||||
public static Tensor block3(Tensor x, int filters, int kernel_size = 3, int stride = 1, int groups = 32, bool conv_shortcut = true, string name = null) => throw new NotImplementedException(); | |||||
public static Tensor stack3(Tensor x, int filters, int blocks, int stride1 = 2, int groups = 32, string name = null) => throw new NotImplementedException(); | |||||
public static Model ResNet50(bool include_top = true, string weights = "imagenet", | |||||
Tensor input_tensor = null, TensorShape input_shape = null, | |||||
string pooling = null, int classes = 1000) => throw new NotImplementedException(); | |||||
public static Model ResNet101(bool include_top = true, string weights = "imagenet", | |||||
Tensor input_tensor = null, TensorShape input_shape = null, | |||||
string pooling = null, int classes = 1000) => throw new NotImplementedException(); | |||||
public static Model ResNet152(bool include_top = true, string weights = "imagenet", | |||||
Tensor input_tensor = null, TensorShape input_shape = null, | |||||
string pooling = null, int classes = 1000) => throw new NotImplementedException(); | |||||
public static Tensor preprocess_input(Tensor x, string data_format = null) => throw new NotImplementedException(); | |||||
public static Tensor decode_predictions(Tensor preds, int top = 5) => throw new NotImplementedException(); | |||||
} | } | ||||
} | } |
@@ -4,7 +4,22 @@ using System.Text; | |||||
namespace Tensorflow.Keras.Applications | namespace Tensorflow.Keras.Applications | ||||
{ | { | ||||
class ResnetV2 | |||||
public class ResnetV2 | |||||
{ | { | ||||
public static Model ResNet50V2(bool include_top = true, string weights = "imagenet", | |||||
Tensor input_tensor = null, TensorShape input_shape = null, | |||||
string pooling = null, int classes = 1000) => throw new NotImplementedException(); | |||||
public static Model ResNet101V2(bool include_top = true, string weights = "imagenet", | |||||
Tensor input_tensor = null, TensorShape input_shape = null, | |||||
string pooling = null, int classes = 1000) => throw new NotImplementedException(); | |||||
public static Model ResNet152V2(bool include_top = true, string weights = "imagenet", | |||||
Tensor input_tensor = null, TensorShape input_shape = null, | |||||
string pooling = null, int classes = 1000) => throw new NotImplementedException(); | |||||
public static Tensor preprocess_input(Tensor x, string data_format = null) => throw new NotImplementedException(); | |||||
public static Tensor decode_predictions(Tensor preds, int top = 5) => throw new NotImplementedException(); | |||||
} | } | ||||
} | } |
@@ -4,7 +4,14 @@ using System.Text; | |||||
namespace Tensorflow.Keras.Applications | namespace Tensorflow.Keras.Applications | ||||
{ | { | ||||
class Vgg16 | |||||
public class Vgg16 | |||||
{ | { | ||||
public static Model VGG16(bool include_top = true, string weights = "imagenet", | |||||
Tensor input_tensor = null, TensorShape input_shape = null, | |||||
string pooling = null, int classes = 1000) => throw new NotImplementedException(); | |||||
public static Tensor preprocess_input(Tensor x, string data_format = null) => throw new NotImplementedException(); | |||||
public static Tensor decode_predictions(Tensor preds, int top = 5) => throw new NotImplementedException(); | |||||
} | } | ||||
} | } |
@@ -4,7 +4,14 @@ using System.Text; | |||||
namespace Tensorflow.Keras.Applications | namespace Tensorflow.Keras.Applications | ||||
{ | { | ||||
class Vgg19 | |||||
public class Vgg19 | |||||
{ | { | ||||
public static Model VGG19(bool include_top = true, string weights = "imagenet", | |||||
Tensor input_tensor = null, TensorShape input_shape = null, | |||||
string pooling = null, int classes = 1000) => throw new NotImplementedException(); | |||||
public static Tensor preprocess_input(Tensor x, string data_format = null) => throw new NotImplementedException(); | |||||
public static Tensor decode_predictions(Tensor preds, int top = 5) => throw new NotImplementedException(); | |||||
} | } | ||||
} | } |
@@ -4,7 +4,14 @@ using System.Text; | |||||
namespace Tensorflow.Keras.Applications | namespace Tensorflow.Keras.Applications | ||||
{ | { | ||||
class Xception | |||||
public class Xception | |||||
{ | { | ||||
public static Model XCeption(bool include_top = true, string weights = "imagenet", | |||||
Tensor input_tensor = null, TensorShape input_shape = null, | |||||
string pooling = null, int classes = 1000) => throw new NotImplementedException(); | |||||
public static Tensor preprocess_input(Tensor x, string data_format = null) => throw new NotImplementedException(); | |||||
public static Tensor decode_predictions(Tensor preds, int top = 5) => throw new NotImplementedException(); | |||||
} | } | ||||
} | } |