Browse Source

Merge branch 'master' into tf.keras-0.3.image-classification

tags/keras_v0.3.0
Oceania2018 4 years ago
parent
commit
8b6dc478b2
25 changed files with 835 additions and 51 deletions
  1. +20
    -24
      README.md
  2. +21
    -0
      src/TensorFlowNET.Core/Operations/array_ops.cs
  3. +15
    -0
      src/TensorFlowNET.Core/Operations/gen_array_ops.cs
  4. +34
    -0
      src/TensorFlowNET.Core/Operations/gen_math_ops.cs
  5. +2
    -2
      src/TensorFlowNET.Core/Operations/nn_impl.py.cs
  6. +8
    -7
      src/TensorFlowNET.Keras/Losses/CategoricalCrossentropy.cs
  7. +28
    -0
      src/TensorFlowNET.Keras/Losses/CosineSimilarity.cs
  8. +36
    -0
      src/TensorFlowNET.Keras/Losses/Huber.cs
  9. +3
    -2
      src/TensorFlowNET.Keras/Losses/ILossFunc.cs
  10. +28
    -0
      src/TensorFlowNET.Keras/Losses/LogCosh.cs
  11. +4
    -4
      src/TensorFlowNET.Keras/Losses/Loss.cs
  12. +25
    -4
      src/TensorFlowNET.Keras/Losses/LossesApi.cs
  13. +23
    -0
      src/TensorFlowNET.Keras/Losses/MeanAbsoluteError.cs
  14. +24
    -0
      src/TensorFlowNET.Keras/Losses/MeanAbsolutePercentageError.cs
  15. +23
    -0
      src/TensorFlowNET.Keras/Losses/MeanSquaredError.cs
  16. +33
    -0
      src/TensorFlowNET.Keras/Losses/MeanSquaredLogarithmicError.cs
  17. +1
    -0
      src/TensorFlowNET.Keras/Losses/ReductionV2.cs
  18. +5
    -8
      src/TensorFlowNET.Keras/Losses/SparseCategoricalCrossentropy.cs
  19. +76
    -0
      test/TensorFlowNET.UnitTest/Keras/CosineSimilarity.Test.cs
  20. +72
    -0
      test/TensorFlowNET.UnitTest/Keras/Huber.Test.cs
  21. +72
    -0
      test/TensorFlowNET.UnitTest/Keras/LogCosh.Test.cs
  22. +73
    -0
      test/TensorFlowNET.UnitTest/Keras/MeanAbsoluteError.Test.cs
  23. +72
    -0
      test/TensorFlowNET.UnitTest/Keras/MeanAbsolutePercentageError.Test.cs
  24. +65
    -0
      test/TensorFlowNET.UnitTest/Keras/MeanSquaredError.Test.cs
  25. +72
    -0
      test/TensorFlowNET.UnitTest/Keras/MeanSquaredLogarithmicError.Test.cs

+ 20
- 24
README.md View File

@@ -56,30 +56,32 @@ PM> Install-Package SciSharp.TensorFlow.Redist-Windows-GPU

Import TF.NET and Keras API in your project.

```cs
```csharp
using static Tensorflow.Binding;
using static Tensorflow.KerasApi;
using Tensorflow;
using NumSharp;
```

Linear Regression in `Eager` mode:

```c#
```csharp
// Parameters
var training_steps = 1000;
var learning_rate = 0.01f;
var display_step = 100;

// Sample data
var train_X = np.array(3.3f, 4.4f, 5.5f, 6.71f, 6.93f, 4.168f, 9.779f, 6.182f, 7.59f, 2.167f,
var X = np.array(3.3f, 4.4f, 5.5f, 6.71f, 6.93f, 4.168f, 9.779f, 6.182f, 7.59f, 2.167f,
7.042f, 10.791f, 5.313f, 7.997f, 5.654f, 9.27f, 3.1f);
var train_Y = np.array(1.7f, 2.76f, 2.09f, 3.19f, 1.694f, 1.573f, 3.366f, 2.596f, 2.53f, 1.221f,
var Y = np.array(1.7f, 2.76f, 2.09f, 3.19f, 1.694f, 1.573f, 3.366f, 2.596f, 2.53f, 1.221f,
2.827f, 3.465f, 1.65f, 2.904f, 2.42f, 2.94f, 1.3f);
var n_samples = train_X.shape[0];
var n_samples = X.shape[0];

// We can set a fixed init value in order to demo
var W = tf.Variable(-0.06f, name: "weight");
var b = tf.Variable(-0.73f, name: "bias");
var optimizer = tf.optimizers.SGD(learning_rate);
var optimizer = keras.optimizers.SGD(learning_rate);

// Run training for the given number of steps.
foreach (var step in range(1, training_steps + 1))
@@ -112,46 +114,40 @@ Run this example in [Jupyter Notebook](https://github.com/SciSharp/SciSharpCube)
Toy version of `ResNet` in `Keras` functional API:

```csharp
var layers = new LayersApi();
// input layer
var inputs = keras.Input(shape: (32, 32, 3), name: "img");

// convolutional layer
var x = layers.Conv2D(32, 3, activation: "relu").Apply(inputs);
x = layers.Conv2D(64, 3, activation: "relu").Apply(x);
var block_1_output = layers.MaxPooling2D(3).Apply(x);

x = layers.Conv2D(64, 3, activation: "relu", padding: "same").Apply(block_1_output);
x = layers.Conv2D(64, 3, activation: "relu", padding: "same").Apply(x);
var block_2_output = layers.add(x, block_1_output);

var block_2_output = layers.Add().Apply(new Tensors(x, block_1_output));
x = layers.Conv2D(64, 3, activation: "relu", padding: "same").Apply(block_2_output);
x = layers.Conv2D(64, 3, activation: "relu", padding: "same").Apply(x);
var block_3_output = layers.add(x, block_2_output);

var block_3_output = layers.Add().Apply(new Tensors(x, block_2_output));
x = layers.Conv2D(64, 3, activation: "relu").Apply(block_3_output);
x = layers.GlobalAveragePooling2D().Apply(x);
x = layers.Dense(256, activation: "relu").Apply(x);
x = layers.Dropout(0.5f).Apply(x);

// output layer
var outputs = layers.Dense(10).Apply(x);

// build keras model
model = keras.Model(inputs, outputs, name: "toy_resnet");
var model = keras.Model(inputs, outputs, name: "toy_resnet");
model.summary();

// compile keras model in tensorflow static graph
model.compile(optimizer: keras.optimizers.RMSprop(1e-3f),
loss: keras.losses.CategoricalCrossentropy(from_logits: true),
metrics: new[] { "acc" });

loss: keras.losses.CategoricalCrossentropy(from_logits: true),
metrics: new[] { "acc" });
// prepare dataset
var ((x_train, y_train), (x_test, y_test)) = keras.datasets.cifar10.load_data();

x_train = x_train / 255.0f;
y_train = np_utils.to_categorical(y_train, 10);
// training
model.fit(x_train[new Slice(0, 1000)], y_train[new Slice(0, 1000)],
batch_size: 64,
epochs: 10,
model.fit(x_train[new Slice(0, 2000)], y_train[new Slice(0, 2000)],
batch_size: 64,
epochs: 10,
validation_split: 0.2f);
```

@@ -260,4 +256,4 @@ WeChat Sponsor 微信打赏:

TensorFlow.NET is a part of [SciSharp STACK](https://scisharp.github.io/SciSharp/)
<br>
<a href="http://scisharpstack.org"><img src="https://github.com/SciSharp/SciSharp/blob/master/art/scisharp-stack.png" width="391" height="100" /></a>
<a href="http://scisharpstack.org"><img src="https://github.com/SciSharp/SciSharp/blob/master/art/scisharp-stack.png" width="391" height="100" /></a>

+ 21
- 0
src/TensorFlowNET.Core/Operations/array_ops.cs View File

@@ -506,6 +506,27 @@ namespace Tensorflow
}
}


public static Tensor where_v2(Tensor condition, object x = null, object y = null, string name = null)
{
if (x == null && y == null)
{
return tf_with(ops.name_scope(name, "Where", new { condition }), scope =>
{
name = scope;
condition = ops.convert_to_tensor(condition, preferred_dtype: dtypes.@bool, name: "condition");
return gen_array_ops.where(condition: condition, name: name);
});
}
else if (x != null && y != null)
{
return gen_array_ops.select_v2(condition, x, y, name);
}
else
{
throw new ValueError("x and y must both be non-None or both be None.");
}
}
/// <summary>
/// Returns the shape of a tensor.
/// </summary>


+ 15
- 0
src/TensorFlowNET.Core/Operations/gen_array_ops.cs View File

@@ -423,6 +423,21 @@ namespace Tensorflow
var _op = tf.OpDefLib._apply_op_helper("Select", name, new { condition, t = x, e = y });
return _op.outputs[0];
}
public static Tensor select_v2<Tx, Ty>(Tensor condition, Tx x, Ty y, string name = null)
{
if (tf.Context.executing_eagerly())
{
var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName,
"SelectV2", name,
null,
condition, x, y);

return results[0];
}

var _op = tf.OpDefLib._apply_op_helper("SelectV2", name, new { condition, t = x, e = y });
return _op.outputs[0];
}

public static Tensor scatter_nd(Tensor indices, Tensor updates, Tensor[] shape, string name = null)
{


+ 34
- 0
src/TensorFlowNET.Core/Operations/gen_math_ops.cs View File

@@ -714,7 +714,23 @@ namespace Tensorflow

return _op.outputs[0];
}
public static Tensor softplus(Tensor features, string name = null)
{
if (tf.Context.executing_eagerly())
{
var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName,
"Softplus", name,
null,
features);

return results[0];
}

var _op = tf.OpDefLib._apply_op_helper("Softplus", name, args: new { features });

return _op.outputs[0];
}
public static Tensor cast(Tensor x, TF_DataType DstT, bool Truncate = false, string name = null)
=> tf.Context.RunInAutoMode(()
=> tf.OpDefLib._apply_op_helper("Cast", name, args: new { x, DstT, Truncate }).output, ()
@@ -1068,6 +1084,15 @@ namespace Tensorflow

public static Tensor _abs(Tensor x, string name = null)
{
if (tf.Context.executing_eagerly())
{
var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName,
"Abs", name,
null,
x);

return results[0];
}
var _op = tf.OpDefLib._apply_op_helper("Abs", name, args: new { x });

return _op.output;
@@ -1202,6 +1227,15 @@ namespace Tensorflow
/// <returns></returns>
public static Tensor rsqrt(Tensor x, string name = null)
{
if (tf.Context.executing_eagerly())
{
var results = tf.Runner.TFE_FastPathExecute(tf.Context, tf.Context.DeviceName,
"Rsqrt", name,
null,
x);

return results[0];
}
var _op = tf.OpDefLib._apply_op_helper("Rsqrt", name, new { x });

return _op.outputs[0];


+ 2
- 2
src/TensorFlowNET.Core/Operations/nn_impl.py.cs View File

@@ -31,7 +31,7 @@ namespace Tensorflow
/// <returns></returns>
public static Tensor l2_normalize(Tensor x,
int axis = 0,
float epsilon = 1e-12f,
Tensor epsilon =null,
string name = null)
{
return tf_with(ops.name_scope(name, "l2_normalize", new { x }), scope =>
@@ -39,7 +39,7 @@ namespace Tensorflow
x = ops.convert_to_tensor(x, name: "x");
var sq = math_ops.square(x);
var square_sum = math_ops.reduce_sum(sq, axis, keepdims: true);
var x_inv_norm = math_ops.rsqrt(math_ops.maximum(square_sum, epsilon));
var x_inv_norm = math_ops.rsqrt(math_ops.maximum(square_sum, epsilon == null ? tf.Variable(1e-12f) : epsilon));
return math_ops.multiply(x, x_inv_norm, name: name);
});
}


+ 8
- 7
src/TensorFlowNET.Keras/Losses/CategoricalCrossentropy.cs View File

@@ -9,18 +9,19 @@ namespace Tensorflow.Keras.Losses
public class CategoricalCrossentropy : LossFunctionWrapper, ILossFunc
{
float label_smoothing;
public CategoricalCrossentropy(bool from_logits = false,
public CategoricalCrossentropy(
bool from_logits = false,
float label_smoothing = 0,
string reduction = ReductionV2.AUTO,
string name = "categorical_crossentropy") :
base(reduction: reduction,
name: name,
from_logits: from_logits)
string reduction = null,
string name = null) :
base(reduction: reduction,
name: name == null ? "categorical_crossentropy" : name,
from_logits: from_logits)
{
this.label_smoothing = label_smoothing;
}


public override Tensor Apply(Tensor y_true, Tensor y_pred, bool from_logits = false, int axis = -1)
{
// Try to adjust the shape so that rank of labels = rank of logits - 1.


+ 28
- 0
src/TensorFlowNET.Keras/Losses/CosineSimilarity.cs View File

@@ -0,0 +1,28 @@
using System;
using System.Collections.Generic;
using System.Text;
using static Tensorflow.Binding;
using static Tensorflow.KerasApi;

namespace Tensorflow.Keras.Losses
{
public class CosineSimilarity : LossFunctionWrapper, ILossFunc
{
protected int axis=-1;
public CosineSimilarity(
string reduction = null,
int axis=-1,
string name = null) :
base(reduction: reduction, name: name == null ? "cosine_similarity" : name)
{
this.axis = axis;
}

public override Tensor Apply(Tensor y_true = null, Tensor y_pred =null, bool from_logits = false, int axis = -1)
{
Tensor y_true_normalize = nn_impl.l2_normalize(y_true, axis : this.axis);
Tensor y_pred_normalize = nn_impl.l2_normalize(y_pred, axis: this.axis);
return -math_ops.reduce_sum(y_true_normalize * y_pred_normalize, axis : this.axis);
}
}
}

+ 36
- 0
src/TensorFlowNET.Keras/Losses/Huber.cs View File

@@ -0,0 +1,36 @@
using System;
using System.Collections.Generic;
using System.Text;
using static Tensorflow.Binding;
using static Tensorflow.KerasApi;

namespace Tensorflow.Keras.Losses
{
public class Huber : LossFunctionWrapper, ILossFunc
{
protected Tensor delta = tf.Variable(1.0) ;
public Huber (
string reduction = null,
Tensor delta = null,
string name = null) :
base(reduction: reduction, name: name == null ? "huber" : name)
{
this.delta = delta==null? this.delta: delta;
}

public override Tensor Apply(Tensor y_true = null, Tensor y_pred =null, bool from_logits = false, int axis = -1)
{
Tensor y_pred_cast = math_ops.cast(y_pred, dtype: TF_DataType.TF_FLOAT);
Tensor y_true_cast = math_ops.cast(y_true, dtype: TF_DataType.TF_FLOAT);
Tensor delta = math_ops.cast(this.delta, dtype: TF_DataType.TF_FLOAT);
Tensor error = math_ops.subtract(y_pred_cast, y_true_cast);
Tensor abs_error = math_ops.abs(error);
Tensor half = ops.convert_to_tensor(0.5, dtype: abs_error.dtype);
return gen_math_ops.mean(array_ops.where_v2(abs_error <= delta,
half * math_ops.pow(error, 2),
half * math_ops.pow(delta, 2) + delta * (abs_error - delta)),
axis : -1);
}
}
}

+ 3
- 2
src/TensorFlowNET.Keras/Losses/ILossFunc.cs View File

@@ -2,7 +2,8 @@
{
public interface ILossFunc
{
string Reduction { get; }
Tensor Call(Tensor y_true, Tensor y_pred);
public string Reduction { get; }
public string Name { get; }
Tensor Call(Tensor y_true, Tensor y_pred, Tensor sample_weight = null);
}
}

+ 28
- 0
src/TensorFlowNET.Keras/Losses/LogCosh.cs View File

@@ -0,0 +1,28 @@
using System;
using System.Collections.Generic;
using System.Text;
using Tensorflow.Operations;
using static Tensorflow.Binding;
using static Tensorflow.KerasApi;

namespace Tensorflow.Keras.Losses
{
public class LogCosh : LossFunctionWrapper, ILossFunc
{
public LogCosh(
string reduction = null,
string name = null) :
base(reduction: reduction, name: name == null ? "huber" : name){ }

public override Tensor Apply(Tensor y_true = null, Tensor y_pred =null, bool from_logits = false, int axis = -1)
{
Tensor y_pred_dispatch = ops.convert_to_tensor(y_pred);
Tensor y_true_cast = gen_math_ops.cast(y_true, y_pred_dispatch.dtype);
Tensor x = y_pred_dispatch - y_true_cast;
return gen_math_ops.mean(x + gen_math_ops.softplus(-2.0 * x) - math_ops.cast(math_ops.log(tf.Variable(2.0)), x.dtype),axis: -1);

}
}
}

+ 4
- 4
src/TensorFlowNET.Keras/Losses/Loss.cs View File

@@ -15,12 +15,12 @@ namespace Tensorflow.Keras.Losses
string _name_scope;

public string Reduction => reduction;
public string Name => name;
public Loss(string reduction = ReductionV2.AUTO,
string name = null,
bool from_logits = false)
{
this.reduction = reduction;
this.reduction = reduction == null ? ReductionV2.SUM_OVER_BATCH_SIZE : reduction;
this.name = name;
this.from_logits = from_logits;
_allow_sum_over_batch_size = false;
@@ -31,10 +31,10 @@ namespace Tensorflow.Keras.Losses
throw new NotImplementedException("");
}

public Tensor Call(Tensor y_true, Tensor y_pred)
public Tensor Call(Tensor y_true, Tensor y_pred, Tensor sample_weight = null)
{
var losses = Apply(y_true, y_pred, from_logits: from_logits);
return losses_utils.compute_weighted_loss(losses, reduction: ReductionV2.SUM_OVER_BATCH_SIZE);
return losses_utils.compute_weighted_loss(losses, reduction: this.reduction , sample_weight: sample_weight);
}

void _set_name_scope()


+ 25
- 4
src/TensorFlowNET.Keras/Losses/LossesApi.cs View File

@@ -2,10 +2,31 @@
{
public class LossesApi
{
public ILossFunc SparseCategoricalCrossentropy(bool from_logits = false)
=> new SparseCategoricalCrossentropy(from_logits: from_logits);
public ILossFunc SparseCategoricalCrossentropy(string reduction = null, string name = null,bool from_logits = false)
=> new SparseCategoricalCrossentropy(reduction: reduction, name: name,from_logits: from_logits);

public ILossFunc CategoricalCrossentropy(string reduction = null, string name = null,bool from_logits = false)
=> new CategoricalCrossentropy(reduction: reduction, name: name,from_logits: from_logits);
public ILossFunc MeanSquaredError(string reduction = null, string name = null)
=> new MeanSquaredError(reduction: reduction, name:name);
public ILossFunc MeanSquaredLogarithmicError(string reduction = null, string name = null)
=> new MeanSquaredLogarithmicError(reduction: reduction, name: name);

public ILossFunc MeanAbsolutePercentageError(string reduction = null, string name = null)
=> new MeanAbsolutePercentageError(reduction: reduction, name: name);

public ILossFunc MeanAbsoluteError(string reduction = null, string name = null)
=> new MeanAbsoluteError(reduction: reduction, name: name);

public ILossFunc CosineSimilarity(string reduction = null, string name = null,int axis=-1)
=> new CosineSimilarity(reduction: reduction, name: name, axis: axis);

public ILossFunc Huber(string reduction = null, string name = null, Tensor delta=null)
=> new Huber(reduction: reduction, name: name, delta: delta);

public ILossFunc LogCosh(string reduction = null, string name = null)
=> new LogCosh(reduction: reduction, name: name);

public ILossFunc CategoricalCrossentropy(bool from_logits = false)
=> new CategoricalCrossentropy(from_logits: from_logits);
}
}

+ 23
- 0
src/TensorFlowNET.Keras/Losses/MeanAbsoluteError.cs View File

@@ -0,0 +1,23 @@
using System;
using System.Collections.Generic;
using System.Text;
using static Tensorflow.Binding;
using static Tensorflow.KerasApi;

namespace Tensorflow.Keras.Losses
{
public class MeanAbsoluteError : LossFunctionWrapper, ILossFunc
{
public MeanAbsoluteError(
string reduction = null,
string name = null) :
base(reduction: reduction, name: name == null ? "mean_absolute_error" : name){ }

public override Tensor Apply(Tensor y_true = null, Tensor y_pred =null, bool from_logits = false, int axis = -1)
{
Tensor y_pred_dispatch = ops.convert_to_tensor(y_pred);
Tensor y_true_cast = gen_math_ops.cast(y_true, y_pred_dispatch.dtype);
return gen_math_ops.mean(math_ops.abs(y_pred_dispatch - y_true_cast), axis: -1);
}
}
}

+ 24
- 0
src/TensorFlowNET.Keras/Losses/MeanAbsolutePercentageError.cs View File

@@ -0,0 +1,24 @@
using System;
using System.Collections.Generic;
using System.Text;
using static Tensorflow.Binding;
using static Tensorflow.KerasApi;

namespace Tensorflow.Keras.Losses
{
public class MeanAbsolutePercentageError : LossFunctionWrapper, ILossFunc
{
public MeanAbsolutePercentageError(
string reduction = null,
string name = null) :
base(reduction: reduction, name: name == null ? "mean_absolute_percentage_error" : name){ }

public override Tensor Apply(Tensor y_true = null, Tensor y_pred =null, bool from_logits = false, int axis = -1)
{
Tensor y_pred_dispatch = ops.convert_to_tensor(y_pred);
Tensor y_true_cast = gen_math_ops.cast(y_true, y_pred_dispatch.dtype);
Tensor diff = math_ops.abs(y_true_cast - y_pred_dispatch) / gen_math_ops.maximum(math_ops.abs(y_true_cast), gen_math_ops.cast(tf.constant(1e-7), y_pred_dispatch.dtype));
return gen_math_ops.cast(tf.constant(100), y_pred_dispatch.dtype) *gen_math_ops.mean(diff, axis: -1);
}
}
}

+ 23
- 0
src/TensorFlowNET.Keras/Losses/MeanSquaredError.cs View File

@@ -0,0 +1,23 @@
using System;
using System.Collections.Generic;
using System.Text;
using static Tensorflow.Binding;
using static Tensorflow.KerasApi;

namespace Tensorflow.Keras.Losses
{
public class MeanSquaredError : LossFunctionWrapper, ILossFunc
{
public MeanSquaredError(
string reduction = null,
string name = null) :
base(reduction: reduction, name: name==null? "mean_squared_error" : name){ }

public override Tensor Apply(Tensor y_true = null, Tensor y_pred =null, bool from_logits = false, int axis = -1)
{
Tensor y_pred_dispatch = ops.convert_to_tensor(y_pred);
Tensor y_true_cast = gen_math_ops.cast(y_true, y_pred_dispatch.dtype);
return gen_math_ops.mean(gen_math_ops.squared_difference(y_pred_dispatch, y_true_cast), axis: -1);
}
}
}

+ 33
- 0
src/TensorFlowNET.Keras/Losses/MeanSquaredLogarithmicError.cs View File

@@ -0,0 +1,33 @@
using System;
using System.Collections.Generic;
using System.Text;
using static Tensorflow.Binding;
using static Tensorflow.KerasApi;

namespace Tensorflow.Keras.Losses
{
public class MeanSquaredLogarithmicError : LossFunctionWrapper, ILossFunc
{
public MeanSquaredLogarithmicError(
string reduction = null,
string name = null) :
base(reduction: reduction, name: name == null ? "mean_squared_logarithmic_error" : name){ }


public override Tensor Apply(Tensor y_true = null, Tensor y_pred =null, bool from_logits = false, int axis = -1)
{
Tensor y_pred_dispatch = ops.convert_to_tensor(y_pred);
Tensor y_true_cast = gen_math_ops.cast(y_true, y_pred_dispatch.dtype);
Tensor first_log=null, second_log=null;
if (y_pred_dispatch.dtype == TF_DataType.TF_DOUBLE) {
first_log = math_ops.log(gen_math_ops.maximum(y_pred_dispatch, 1e-7) + 1.0);
second_log = math_ops.log(gen_math_ops.maximum(y_true_cast, 1e-7) + 1.0);
}
else {
first_log = math_ops.log(gen_math_ops.maximum(y_pred_dispatch, 1e-7f) + 1.0f);
second_log = math_ops.log(gen_math_ops.maximum(y_true_cast, 1e-7f) + 1.0f);
}
return gen_math_ops.mean(gen_math_ops.squared_difference(first_log, second_log), axis: -1);
}
}
}

+ 1
- 0
src/TensorFlowNET.Keras/Losses/ReductionV2.cs View File

@@ -4,6 +4,7 @@
{
public const string NONE = "none";
public const string AUTO = "auto";
public const string SUM = "sum";
public const string SUM_OVER_BATCH_SIZE = "sum_over_batch_size";
public const string WEIGHTED_MEAN = "weighted_mean";
}


+ 5
- 8
src/TensorFlowNET.Keras/Losses/SparseCategoricalCrossentropy.cs View File

@@ -4,14 +4,11 @@ namespace Tensorflow.Keras.Losses
{
public class SparseCategoricalCrossentropy : LossFunctionWrapper, ILossFunc
{
public SparseCategoricalCrossentropy(bool from_logits = false,
string reduction = ReductionV2.AUTO,
string name = "sparse_categorical_crossentropy") :
base(reduction: reduction,
name: name)
{

}
public SparseCategoricalCrossentropy(
bool from_logits = false,
string reduction = null,
string name = null) :
base(reduction: reduction, name: name == null ? "sparse_categorical_crossentropy" : name){ }

public override Tensor Apply(Tensor target, Tensor output, bool from_logits = false, int axis = -1)
{


+ 76
- 0
test/TensorFlowNET.UnitTest/Keras/CosineSimilarity.Test.cs View File

@@ -0,0 +1,76 @@
using Microsoft.VisualStudio.TestTools.UnitTesting;
using NumSharp;
using Tensorflow;
using Tensorflow.Keras.Losses;
using static Tensorflow.Binding;
using static Tensorflow.KerasApi;

namespace TensorFlowNET.UnitTest.Keras
{
[TestClass]
public class CosineSimilarity
{
//https://keras.io/api/losses/regression_losses/

NDArray y_true_float = new float[,] { { 0.0f, 1.0f }, { 1.0f, 1.0f } };
NDArray y_pred_float = new float[,] { { 1.0f, 0.0f }, { 1.0f, 1.0f } };

[TestMethod]
public void _Default()
{
//>>> # Using 'auto'/'sum_over_batch_size' reduction type.
//>>> cosine_loss = tf.keras.losses.CosineSimilarity(axis = 1)
//>>> # l2_norm(y_true) = [[0., 1.], [1./1.414], 1./1.414]]]
//>>> # l2_norm(y_pred) = [[1., 0.], [1./1.414], 1./1.414]]]
//>>> # l2_norm(y_true) . l2_norm(y_pred) = [[0., 0.], [0.5, 0.5]]
//>>> # loss = mean(sum(l2_norm(y_true) . l2_norm(y_pred), axis=1))
//>>> # = -((0. + 0.) + (0.5 + 0.5)) / 2
//-0.5
var loss = keras.losses.CosineSimilarity(axis : 1);
var call = loss.Call(y_true_float, y_pred_float);
Assert.AreEqual((NDArray)(-0.49999997f), call.numpy());
}

[TestMethod]

public void _Sample_Weight()
{
//>>> # Calling with 'sample_weight'.
//>>> cosine_loss(y_true, y_pred, sample_weight =[0.8, 0.2]).numpy()
//- 0.0999
var loss = keras.losses.CosineSimilarity();
var call = loss.Call(y_true_float, y_pred_float, sample_weight: (NDArray)new float[] { 0.8f, 0.2f });
Assert.AreEqual((NDArray) (- 0.099999994f), call.numpy());
}

[TestMethod]

public void _SUM()
{
//>>> # Using 'sum' reduction type.
//>>> cosine_loss = tf.keras.losses.CosineSimilarity(axis = 1,
//... reduction = tf.keras.losses.Reduction.SUM)
//>>> cosine_loss(y_true, y_pred).numpy()
//- 0.999
var loss = keras.losses.CosineSimilarity(axis: 1,reduction : ReductionV2.SUM);
var call = loss.Call(y_true_float, y_pred_float);
Assert.AreEqual((NDArray)(-0.99999994f), call.numpy());
}

[TestMethod]

public void _None()
{
//>>> # Using 'none' reduction type.
//>>> cosine_loss = tf.keras.losses.CosineSimilarity(axis = 1,
//... reduction = tf.keras.losses.Reduction.NONE)
//>>> cosine_loss(y_true, y_pred).numpy()
//array([-0., -0.999], dtype = float32)
var loss = keras.losses.CosineSimilarity(axis :1, reduction: ReductionV2.NONE);
var call = loss.Call(y_true_float, y_pred_float);
Assert.AreEqual((NDArray)new float[] { -0f, -0.99999994f }, call.numpy());
}

}
}

+ 72
- 0
test/TensorFlowNET.UnitTest/Keras/Huber.Test.cs View File

@@ -0,0 +1,72 @@
using Microsoft.VisualStudio.TestTools.UnitTesting;
using NumSharp;
using Tensorflow;
using Tensorflow.Keras.Losses;
using static Tensorflow.Binding;
using static Tensorflow.KerasApi;

namespace TensorFlowNET.UnitTest.Keras
{
[TestClass]
public class Huber
{
//https://keras.io/api/losses/regression_losses/#meansquarederror-class

NDArray y_true_float = new float[,] { { 0.0f, 1.0f }, { 0.0f, 0.0f } };
NDArray y_pred_float = new float[,] { { 0.6f, 0.4f }, { 0.4f, 0.6f } };

[TestMethod]
public void _Default()
{
//>>> # Using 'auto'/'sum_over_batch_size' reduction type.
//>>> h = tf.keras.losses.Huber()
//>>> h(y_true, y_pred).numpy()
//0.155
var loss = keras.losses.Huber();
var call = loss.Call(y_true_float, y_pred_float);
Assert.AreEqual((NDArray)0.155f, call.numpy());
}

[TestMethod]

public void _Sample_Weight()
{
//>>> # Calling with 'sample_weight'.
//>>> h(y_true, y_pred, sample_weight =[1, 0]).numpy()
//0.09
var loss = keras.losses.Huber();
var call = loss.Call(y_true_float, y_pred_float, sample_weight: (NDArray)new float[] { 0.1f, 0.0f });
Assert.AreEqual((NDArray)0.009000001f, call.numpy());
}

[TestMethod]

public void _SUM()
{
//>>> # Using 'sum' reduction type.
//>>> h = tf.keras.losses.Huber(
//... reduction = tf.keras.losses.Reduction.SUM)
//>>> h(y_true, y_pred).numpy()
//0.31
var loss = keras.losses.Huber(reduction : ReductionV2.SUM);
var call = loss.Call(y_true_float, y_pred_float);
Assert.AreEqual((NDArray)0.31f, call.numpy());
}

[TestMethod]

public void _None()
{
//>>> # Using 'none' reduction type.
//>>> h = tf.keras.losses.Huber(
//... reduction = tf.keras.losses.Reduction.NONE)
//>>> h(y_true, y_pred).numpy()
//array([0.18, 0.13], dtype = float32)
var loss = keras.losses.Huber(reduction: ReductionV2.NONE);
var call = loss.Call(y_true_float, y_pred_float);
Assert.AreEqual((NDArray)new float[] { 0.18f, 0.13000001f }, call.numpy());
}

}
}

+ 72
- 0
test/TensorFlowNET.UnitTest/Keras/LogCosh.Test.cs View File

@@ -0,0 +1,72 @@
using Microsoft.VisualStudio.TestTools.UnitTesting;
using NumSharp;
using Tensorflow;
using Tensorflow.Keras.Losses;
using static Tensorflow.Binding;
using static Tensorflow.KerasApi;

namespace TensorFlowNET.UnitTest.Keras
{
[TestClass]
public class LogCosh
{
//https://keras.io/api/losses/regression_losses/#meansquarederror-class

NDArray y_true_float = new float[,] { { 0.0f, 1.0f }, { 0.0f, 0.0f } };
NDArray y_pred_float = new float[,] { { 1.0f, 1.0f }, { 0.0f, 0.0f } };

[TestMethod]
public void _Default()
{
//>>> # Using 'auto'/'sum_over_batch_size' reduction type.
//>>> l = tf.keras.losses.LogCosh()
//>>> l(y_true, y_pred).numpy()
//0.108
var loss = keras.losses.LogCosh();
var call = loss.Call(y_true_float, y_pred_float);
Assert.AreEqual((NDArray)0.1084452f, call.numpy());
}

[TestMethod]

public void _Sample_Weight()
{
//>>> # Calling with 'sample_weight'.
//>>> l(y_true, y_pred, sample_weight =[0.8, 0.2]).numpy()
//0.087
var loss = keras.losses.LogCosh();
var call = loss.Call(y_true_float, y_pred_float, sample_weight: (NDArray)new float[] { 0.8f, 0.2f });
Assert.AreEqual((NDArray)0.08675616f, call.numpy());
}

[TestMethod]

public void _SUM()
{
//>>> # Using 'sum' reduction type.
//>>> l = tf.keras.losses.LogCosh(
//... reduction = tf.keras.losses.Reduction.SUM)
//>>> l(y_true, y_pred).numpy()
//0.217
var loss = keras.losses.LogCosh(reduction : ReductionV2.SUM);
var call = loss.Call(y_true_float, y_pred_float);
Assert.AreEqual((NDArray)0.2168904f, call.numpy());
}

[TestMethod]

public void _None()
{
//>>> # Using 'none' reduction type.
//>>> l = tf.keras.losses.LogCosh(
//... reduction = tf.keras.losses.Reduction.NONE)
//>>> l(y_true, y_pred).numpy()
//array([0.217, 0.], dtype = float32)
var loss = keras.losses.LogCosh(reduction: ReductionV2.NONE);
var call = loss.Call(y_true_float, y_pred_float);
Assert.AreEqual((NDArray)new float[] { 0.2168904f, 0.0f }, call.numpy());
}

}
}

+ 73
- 0
test/TensorFlowNET.UnitTest/Keras/MeanAbsoluteError.Test.cs View File

@@ -0,0 +1,73 @@
using Microsoft.VisualStudio.TestTools.UnitTesting;
using NumSharp;
using Tensorflow;
using Tensorflow.Keras.Losses;
using static Tensorflow.Binding;
using static Tensorflow.KerasApi;

namespace TensorFlowNET.UnitTest.Keras
{
[TestClass]
public class MeanAbsoluteError
{
//https://keras.io/api/losses/regression_losses/

NDArray y_true_float = new float[,] { { 0.0f, 1.0f }, { 0.0f, 0.0f } };
NDArray y_pred_float = new float[,] { { 1.0f, 1.0f }, { 1.0f, 0.0f } };

[TestMethod]

public void _Default()
{

//>>> # Using 'auto'/'sum_over_batch_size' reduction type.
//>>> mae = tf.keras.losses.MeanAbsoluteError()
//>>> mae(y_true, y_pred).numpy()
//0.5
var loss = keras.losses.MeanAbsoluteError();
var call = loss.Call(y_true_float, y_pred_float);
Assert.AreEqual((NDArray)(0.5f), call.numpy());
}

[TestMethod]

public void _Sample_Weight()
{
//>>> # Calling with 'sample_weight'.
//>>> mae(y_true, y_pred, sample_weight =[0.7, 0.3]).numpy()
//0.25
var loss = keras.losses.MeanAbsoluteError();
var call = loss.Call(y_true_float, y_pred_float, sample_weight: (NDArray)new float[] { 0.7f, 0.3f });
Assert.AreEqual((NDArray)(0.25f), call.numpy());
}

[TestMethod]

public void _SUM()
{
//>>> # Using 'sum' reduction type.
//>>> mae = tf.keras.losses.MeanAbsoluteError(
//... reduction = tf.keras.losses.Reduction.SUM)
//>>> mae(y_true, y_pred).numpy()
//1.0
var loss = keras.losses.MeanAbsoluteError( reduction: ReductionV2.SUM);
var call = loss.Call(y_true_float, y_pred_float);
Assert.AreEqual((NDArray)(1.0f), call.numpy());
}

[TestMethod]

public void _None()
{
//>>> # Using 'none' reduction type.
//>>> mae = tf.keras.losses.MeanAbsoluteError(
//... reduction = tf.keras.losses.Reduction.NONE)
//>>> mae(y_true, y_pred).numpy()
//array([0.5, 0.5], dtype = float32)
var loss = keras.losses.MeanAbsoluteError(reduction: ReductionV2.NONE);
var call = loss.Call(y_true_float, y_pred_float);
Assert.AreEqual((NDArray)new float[] { 0.5f, 0.5f }, call.numpy());
}

}
}

+ 72
- 0
test/TensorFlowNET.UnitTest/Keras/MeanAbsolutePercentageError.Test.cs View File

@@ -0,0 +1,72 @@
using Microsoft.VisualStudio.TestTools.UnitTesting;
using NumSharp;
using Tensorflow;
using Tensorflow.Keras.Losses;
using static Tensorflow.Binding;
using static Tensorflow.KerasApi;

namespace TensorFlowNET.UnitTest.Keras
{
[TestClass]
public class MeanAbsolutePercentageError
{
//https://keras.io/api/losses/regression_losses/

NDArray y_true_float = new float[,] { { 2.0f, 1.0f }, { 2.0f, 3.0f } };
NDArray y_pred_float = new float[,] { { 1.0f, 1.0f }, { 1.0f, 0.0f } };

[TestMethod]

public void _Default()
{
//>>> # Using 'auto'/'sum_over_batch_size' reduction type.
//>>> mape = tf.keras.losses.MeanAbsolutePercentageError()
//>>> mape(y_true, y_pred).numpy()
//50.
var loss = keras.losses.MeanAbsolutePercentageError();
var call = loss.Call(y_true_float, y_pred_float);
Assert.AreEqual((NDArray)(50f), call.numpy());
}

[TestMethod]

public void _Sample_Weight()
{
//>>> # Calling with 'sample_weight'.
//>>> mape(y_true, y_pred, sample_weight =[0.7, 0.3]).numpy()
//20.
var loss = keras.losses.MeanAbsolutePercentageError();
var call = loss.Call(y_true_float, y_pred_float, sample_weight: (NDArray)new float[] { 0.7f, 0.3f });
Assert.AreEqual((NDArray)(20f), call.numpy());
}

[TestMethod]

public void _SUM()
{
//>>> # Using 'sum' reduction type.
//>>> mape = tf.keras.losses.MeanAbsolutePercentageError(
//... reduction = tf.keras.losses.Reduction.SUM)
//>>> mape(y_true, y_pred).numpy()
//100.
var loss = keras.losses.MeanAbsolutePercentageError( reduction: ReductionV2.SUM);
var call = loss.Call(y_true_float, y_pred_float);
Assert.AreEqual((NDArray)(100f), call.numpy());
}

[TestMethod]

public void _None()
{
//>>> # Using 'none' reduction type.
//>>> mape = tf.keras.losses.MeanAbsolutePercentageError(
//... reduction = tf.keras.losses.Reduction.NONE)
//>>> mape(y_true, y_pred).numpy()
//array([25., 75.], dtype = float32)
var loss = keras.losses.MeanAbsolutePercentageError(reduction: ReductionV2.NONE);
var call = loss.Call(y_true_float, y_pred_float);
Assert.AreEqual((NDArray)new float[] { 25f, 75f }, call.numpy());
}

}
}

+ 65
- 0
test/TensorFlowNET.UnitTest/Keras/MeanSquaredError.Test.cs View File

@@ -0,0 +1,65 @@
using Microsoft.VisualStudio.TestTools.UnitTesting;
using NumSharp;
using Tensorflow;
using Tensorflow.Keras.Losses;
using static Tensorflow.Binding;
using static Tensorflow.KerasApi;

namespace TensorFlowNET.UnitTest.Keras
{
[TestClass]
public class MeanSquaredErrorTest
{
//https://keras.io/api/losses/regression_losses/#meansquarederror-class

private NDArray y_true = new double[,] { { 0.0, 1.0 }, { 0.0, 0.0 } };
private NDArray y_pred = new double[,] { { 1.0, 1.0 }, { 1.0, 0.0 } };

[TestMethod]
public void Mse_Double()
{
var mse = keras.losses.MeanSquaredError();
var call = mse.Call(y_true, y_pred);
Assert.AreEqual((NDArray)0.5, call.numpy()) ;
}

[TestMethod]
public void Mse_Float()
{
NDArray y_true_float = new float[,] { { 0.0f, 1.0f }, { 0.0f, 0.0f } };
NDArray y_pred_float = new float[,] { { 1.0f, 1.0f }, { 1.0f, 0.0f } };

var mse = keras.losses.MeanSquaredError();
var call = mse.Call(y_true_float, y_pred_float);
Assert.AreEqual((NDArray)0.5, call.numpy());
}

[TestMethod]

public void Mse_Sample_Weight()
{
var mse = keras.losses.MeanSquaredError();
var call = mse.Call(y_true, y_pred, sample_weight: (NDArray)new double[] { 0.7, 0.3 });
Assert.AreEqual((NDArray)0.25, call.numpy());
}

[TestMethod]
public void Mse_Reduction_SUM()
{
var mse = keras.losses.MeanSquaredError(reduction: Reduction.SUM);
var call = mse.Call(y_true, y_pred);
Assert.AreEqual((NDArray)1.0, call.numpy());
}

[TestMethod]

public void Mse_Reduction_NONE()
{
var mse = keras.losses.MeanSquaredError(reduction: Reduction.NONE);
var call = mse.Call(y_true, y_pred);
Assert.AreEqual((NDArray)new double[] { 0.5, 0.5 }, call.numpy());
}
}
}

+ 72
- 0
test/TensorFlowNET.UnitTest/Keras/MeanSquaredLogarithmicError.Test.cs View File

@@ -0,0 +1,72 @@
using Microsoft.VisualStudio.TestTools.UnitTesting;
using NumSharp;
using Tensorflow;
using Tensorflow.Keras.Losses;
using static Tensorflow.Binding;
using static Tensorflow.KerasApi;

namespace TensorFlowNET.UnitTest.Keras
{
[TestClass]
public class MeanSquaredLogarithmicError
{
//https://keras.io/api/losses/regression_losses/

NDArray y_true_float = new float[,] { { 0.0f, 1.0f }, { 0.0f, 0.0f } };
NDArray y_pred_float = new float[,] { { 1.0f, 1.0f }, { 1.0f, 0.0f } };

[TestMethod]

public void _Default()
{
//>>> # Using 'auto'/'sum_over_batch_size' reduction type.
//>>> msle = tf.keras.losses.MeanSquaredLogarithmicError()
//>>> msle(y_true, y_pred).numpy()
//0.240
var loss = keras.losses.MeanSquaredLogarithmicError();
var call = loss.Call(y_true_float, y_pred_float);
Assert.AreEqual((NDArray)(0.24022643f), call.numpy());
}

[TestMethod]

public void _Sample_Weight()
{
//>>> # Calling with 'sample_weight'.
//>>> msle(y_true, y_pred, sample_weight =[0.7, 0.3]).numpy()
//0.120
var loss = keras.losses.MeanSquaredLogarithmicError();
var call = loss.Call(y_true_float, y_pred_float, sample_weight: (NDArray)new float[] { 0.7f, 0.3f });
Assert.AreEqual((NDArray)(0.12011322f), call.numpy());
}

[TestMethod]

public void _SUM()
{
//>>> # Using 'sum' reduction type.
//>>> msle = tf.keras.losses.MeanSquaredLogarithmicError(
//... reduction = tf.keras.losses.Reduction.SUM)
//>>> msle(y_true, y_pred).numpy()
//0.480
var loss = keras.losses.MeanSquaredLogarithmicError( reduction: ReductionV2.SUM);
var call = loss.Call(y_true_float, y_pred_float);
Assert.AreEqual((NDArray)(0.48045287f), call.numpy());
}

[TestMethod]

public void _None()
{
//>>> # Using 'none' reduction type.
//>>> msle = tf.keras.losses.MeanSquaredLogarithmicError(
//... reduction = tf.keras.losses.Reduction.NONE)
//>>> msle(y_true, y_pred).numpy()
//array([0.240, 0.240], dtype = float32)
var loss = keras.losses.MeanSquaredLogarithmicError(reduction: ReductionV2.NONE);
var call = loss.Call(y_true_float, y_pred_float);
Assert.AreEqual((NDArray)new float[] { 0.24022643f, 0.24022643f }, call.numpy());
}

}
}

Loading…
Cancel
Save