Browse Source

Add Chinese version readme.

tags/v0.100.5-BERT-load
Yaohui Liu Haiping 2 years ago
parent
commit
89c68cdc65
2 changed files with 218 additions and 1 deletions
  1. +3
    -1
      README.md
  2. +215
    -0
      docs/README-CN.md

+ 3
- 1
README.md View File

@@ -9,12 +9,14 @@
[![Badge](https://img.shields.io/badge/link-996.icu-red.svg)](https://996.icu/#/en_US)
[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/javiercp/BinderTF.NET/master?urlpath=lab)

English | [中文](docs/Readme-CN.md)

*master branch is based on tensorflow v2.x, v0.6x branch is based on tensorflow v2.6, v0.15-tensorflow1.15 is from tensorflow1.15.*


![tensors_flowing](docs/assets/tensors_flowing.gif)

### Why TensorFlow in C# and F# ?
### Why TensorFlow.NET ?

`SciSharp STACK`'s mission is to bring popular data science technology into the .NET world and to provide .NET developers with a powerful Machine Learning tool set without reinventing the wheel. Since the APIs are kept as similar as possible you can immediately adapt any existing TensorFlow code in C# or F# with a zero learning curve. Take a look at a comparison picture and see how comfortably a TensorFlow/Python script translates into a C# program with TensorFlow.NET.



+ 215
- 0
docs/README-CN.md View File

@@ -0,0 +1,215 @@
![logo](assets/tf.net.logo.png)

**Tensorflow.NET**是AI框架[TensorFlow](https://www.tensorflow.org/)在.NET平台上的实现,支持C#和F#,可以用来搭建深度学习模型并进行训练和推理,并内置了Numpy API,可以用来进行其它科学计算。

Tensorflow.NET并非对于Python的简单封装,而是基于C API的pure C#实现,因此使用时无需额外的环境,可以很方便地用NuGet直接安装使用。并且dotnet团队提供的[ML.NET](https://github.com/dotnet/machinelearning)也依赖于Tensorflow.NET,支持调用Tensorflow.NET进行训练和推理,可以很方便地融入.NET生态。

与tensorflow相同,Tensorflow.NET也内置了Keras这一高级API,只要在安装Tensorflow.NET的同时安装Tensorflow.Keras就可以使用,Keras支持以模块化的方式调用模型,给模型的搭建提供了极大的便利。

[![Join the chat at https://gitter.im/publiclab/publiclab](https://badges.gitter.im/Join%20Chat.svg)](https://gitter.im/sci-sharp/community)
[![Tensorflow.NET](https://ci.appveyor.com/api/projects/status/wx4td43v2d3f2xj6?svg=true)](https://ci.appveyor.com/project/Haiping-Chen/tensorflow-net)
[![NuGet](https://img.shields.io/nuget/dt/TensorFlow.NET.svg)](https://www.nuget.org/packages/TensorFlow.NET)
[![Documentation Status](https://readthedocs.org/projects/tensorflownet/badge/?version=latest)](https://tensorflownet.readthedocs.io/en/latest/?badge=latest)
[![Badge](https://img.shields.io/badge/link-996.icu-red.svg)](https://996.icu/#/en_US)
[![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/javiercp/BinderTF.NET/master?urlpath=lab)

中文 | [English](https://github.com/SciSharp/TensorFlow.NET#readme)

*当前主分支与Tensorflow2.10版本相对应,支持Eager Mode,同时也支持v1的静态图。*


![tensors_flowing](assets/tensors_flowing.gif)

### Why TensorFlow.NET?

`SciSharp STACK`开源社区的目标是构建.NET平台下易用的科学计算库,而Tensorflow.NET就是其中最具代表性的仓库之一。在深度学习领域Python是主流,无论是初学者还是资深开发者,模型的搭建和训练都常常使用Python写就的AI框架,比如tensorflow。但在实际应用深度学习模型的时候,又可能希望用到.NET生态,亦或只是因为.NET是自己最熟悉的领域,这时候Tensorflow.NET就有显著的优点,因为它不仅可以和.NET生态很好地贴合,其API还使得开发者很容易将Python代码迁移过来。下面的对比就是很好的例子,Python代码和C#代码有着高度相似的API,这会使得迁移的时候无需做过多修改。

![pythn vs csharp](assets/syntax-comparision.png)

除了高度相似的API外,Tensorflow.NET与tensorflow也已经打通数据通道,tensorflow训练并保存的模型可以在Tensorflow.NET中直接读取并继续训练或推理,反之Tensorflow.NET保存的模型也可以在tensorflow中读取,这大大方便了模型的训练和部署。

与其它类似的库比如[TensorFlowSharp](https://www.nuget.org/packages/TensorFlowSharp/)相比,Tensorflow.NET的实现更加完全,提供了更多的高级API,使用起来更为方便,更新也更加迅速。


### 文档

基本介绍与简单用例:[Tensorflow.NET Documents](https://scisharp.github.io/tensorflow-net-docs)

详细文档:[The Definitive Guide to Tensorflow.NET](https://tensorflownet.readthedocs.io/en/latest/FrontCover.html)

例程:[TensorFlow.NET Examples](https://github.com/SciSharp/TensorFlow.NET-Examples)

运行例程常见问题:[Tensorflow.NET FAQ](tensorflowlib/README.md)

### 安装与使用

安装可以在NuGet包管理器中搜索包名安装,也可以用下面命令行的方式。

安装分为两个部分,第一部分是Tensorflow.NET的主体:

```sh
### 安装Tensorflow.NET
PM> Install-Package TensorFlow.NET
### 安装Tensorflow.Keras
PM> Install-Package TensorFlow.Keras
```

第二部分是计算支持部分,只需要根据自己的设备和系统选择下面之一即可:

```
### CPU版本
PM> Install-Package SciSharp.TensorFlow.Redist

### Windows下的GPU版本(需要安装CUDA和CUDNN)
PM> Install-Package SciSharp.TensorFlow.Redist-Windows-GPU

### Linux下的GPU版本(需要安装CUDA和CUDNN)
PM> Install-Package SciSharp.TensorFlow.Redist-Linux-GPU
```

下面给出两个简单的例子,更多例子可以在[TensorFlow.NET Examples]中查看。

#### 简单例子(使用Eager Mode进行线性回归)

```csharp
using static Tensorflow.Binding;
using static Tensorflow.KerasApi;
using Tensorflow;
using Tensorflow.NumPy;

// Parameters
var training_steps = 1000;
var learning_rate = 0.01f;
var display_step = 100;

// Sample data
var X = np.array(3.3f, 4.4f, 5.5f, 6.71f, 6.93f, 4.168f, 9.779f, 6.182f, 7.59f, 2.167f,
7.042f, 10.791f, 5.313f, 7.997f, 5.654f, 9.27f, 3.1f);
var Y = np.array(1.7f, 2.76f, 2.09f, 3.19f, 1.694f, 1.573f, 3.366f, 2.596f, 2.53f, 1.221f,
2.827f, 3.465f, 1.65f, 2.904f, 2.42f, 2.94f, 1.3f);
var n_samples = X.shape[0];

// We can set a fixed init value in order to demo
var W = tf.Variable(-0.06f, name: "weight");
var b = tf.Variable(-0.73f, name: "bias");
var optimizer = keras.optimizers.SGD(learning_rate);

// Run training for the given number of steps.
foreach (var step in range(1, training_steps + 1))
{
// Run the optimization to update W and b values.
// Wrap computation inside a GradientTape for automatic differentiation.
using var g = tf.GradientTape();
// Linear regression (Wx + b).
var pred = W * X + b;
// Mean square error.
var loss = tf.reduce_sum(tf.pow(pred - Y, 2)) / (2 * n_samples);
// should stop recording
// Compute gradients.
var gradients = g.gradient(loss, (W, b));

// Update W and b following gradients.
optimizer.apply_gradients(zip(gradients, (W, b)));

if (step % display_step == 0)
{
pred = W * X + b;
loss = tf.reduce_sum(tf.pow(pred - Y, 2)) / (2 * n_samples);
print($"step: {step}, loss: {loss.numpy()}, W: {W.numpy()}, b: {b.numpy()}");
}
}
```

这一用例也可以在[Jupyter Notebook Example](https://github.com/SciSharp/SciSharpCube)进行运行.

#### 简单例子(使用Keras搭建Resnet)

```csharp
using static Tensorflow.Binding;
using static Tensorflow.KerasApi;
using Tensorflow;
using Tensorflow.NumPy;

var layers = new LayersApi();
// input layer
var inputs = keras.Input(shape: (32, 32, 3), name: "img");
// convolutional layer
var x = layers.Conv2D(32, 3, activation: "relu").Apply(inputs);
x = layers.Conv2D(64, 3, activation: "relu").Apply(x);
var block_1_output = layers.MaxPooling2D(3).Apply(x);
x = layers.Conv2D(64, 3, activation: "relu", padding: "same").Apply(block_1_output);
x = layers.Conv2D(64, 3, activation: "relu", padding: "same").Apply(x);
var block_2_output = layers.Add().Apply(new Tensors(x, block_1_output));
x = layers.Conv2D(64, 3, activation: "relu", padding: "same").Apply(block_2_output);
x = layers.Conv2D(64, 3, activation: "relu", padding: "same").Apply(x);
var block_3_output = layers.Add().Apply(new Tensors(x, block_2_output));
x = layers.Conv2D(64, 3, activation: "relu").Apply(block_3_output);
x = layers.GlobalAveragePooling2D().Apply(x);
x = layers.Dense(256, activation: "relu").Apply(x);
x = layers.Dropout(0.5f).Apply(x);
// output layer
var outputs = layers.Dense(10).Apply(x);
// build keras model
var model = keras.Model(inputs, outputs, name: "toy_resnet");
model.summary();
// compile keras model in tensorflow static graph
model.compile(optimizer: keras.optimizers.RMSprop(1e-3f),
loss: keras.losses.CategoricalCrossentropy(from_logits: true),
metrics: new[] { "acc" });
// prepare dataset
var ((x_train, y_train), (x_test, y_test)) = keras.datasets.cifar10.load_data();
x_train = x_train / 255.0f;
y_train = np_utils.to_categorical(y_train, 10);
// training
model.fit(x_train[new Slice(0, 2000)], y_train[new Slice(0, 2000)],
batch_size: 64,
epochs: 10,
validation_split: 0.2f);
```

此外,Tensorflow.NET也支持用F#搭建上述模型进行训练和推理。

### Tensorflow.NET版本对应关系

| TensorFlow.NET Versions | tensorflow 1.14, cuda 10.0 | tensorflow 1.15, cuda 10.0 | tensorflow 2.3, cuda 10.1 | tensorflow 2.4, cuda 11 | tensorflow 2.10, cuda 11 |
| -------------------------- | ------------- | -------------- | ------------- | ------------- | ------------ |
| tf.net 0.7+, tf.keras 0.7+ | | | | | x |
| tf.net 0.4x, tf.keras 0.5 | | | | x | |
| tf.net 0.3x, tf.keras 0.4 | | | x | | |
| tf.net 0.2x | | x | x | | |
| tf.net 0.15 | x | x | | | |
| tf.net 0.14 | x | | | | |

如果使用过程中发现有缺失的版本,请告知我们,谢谢!

请注意Tensorflow.NET与Tensorflow.Keras版本存在一一对应关系,请安装与Tensorflow.NET对应的Tensorflow.Keras版本。

### 参与我们的开发:

我们欢迎任何人的任何形式的贡献!无论是文档中的错误纠正,新特性提议,还是BUG修复等等,都会使得Tensorflow.NET项目越来越好,Tensorflow.NET的全体开发者也会积极帮助解决您提出的问题。

下面任何一种形式都可以帮助Tensorflow.NET越来越好:

* Star和分享Tensorflow.NET项目
* 为Tensorflow.NET添加更多的用例
* 在issue中告知我们Tensorflow.NET目前相比tensorflow缺少的API或者没有对齐的特性
* 在issue中提出Tensorflow.NET存在的BUG或者可以改进的地方
* 在待办事项清单中选择一个进行或者解决某个issue
* 帮助我们完善文档,这也十分重要


### 支持我们
我们推出了[TensorFlow.NET实战](https://item.jd.com/13441549.html)这本书,包含了Tensorflow.NET主要开发者编写的讲解与实战例程,欢迎您的购买,希望这本书可以给您带来帮助。
<p float="left">
<img src="https://user-images.githubusercontent.com/1705364/198852429-91741881-c196-401e-8e9e-2f8656196613.png" width="250" />
<img src="https://user-images.githubusercontent.com/1705364/198852521-2f842043-3ace-49d2-8533-039c6a043a3f.png" width="260" />
<img src="https://user-images.githubusercontent.com/1705364/198852721-54cd9e7e-9210-4931-a86c-77584b25b8e1.png" width="260" />
</p>

### 联系我们

可以在 [Twitter](https://twitter.com/ScisharpStack), [Facebook](https://www.facebook.com/scisharp.stack.9), [Medium](https://medium.com/scisharp), [LinkedIn](https://www.linkedin.com/company/scisharp-stack/)中关注我们,也可以在[Gitter](https://gitter.im/sci-sharp/community)中与项目开发者以及其它使用者进行沟通交流,也欢迎在仓库中提起issue。

TensorFlow.NET is a part of [SciSharp STACK](https://scisharp.github.io/SciSharp/)
<br>
<a href="http://scisharpstack.org"><img src="https://github.com/SciSharp/SciSharp/blob/master/art/scisharp-stack.png" width="391" height="100" /></a>

Loading…
Cancel
Save