diff --git a/README.md b/README.md index b74f0791..2eb3a009 100644 --- a/README.md +++ b/README.md @@ -9,12 +9,14 @@ [](https://996.icu/#/en_US) [](https://mybinder.org/v2/gh/javiercp/BinderTF.NET/master?urlpath=lab) +English | [中文](docs/Readme-CN.md) + *master branch is based on tensorflow v2.x, v0.6x branch is based on tensorflow v2.6, v0.15-tensorflow1.15 is from tensorflow1.15.*  -### Why TensorFlow in C# and F# ? +### Why TensorFlow.NET ? `SciSharp STACK`'s mission is to bring popular data science technology into the .NET world and to provide .NET developers with a powerful Machine Learning tool set without reinventing the wheel. Since the APIs are kept as similar as possible you can immediately adapt any existing TensorFlow code in C# or F# with a zero learning curve. Take a look at a comparison picture and see how comfortably a TensorFlow/Python script translates into a C# program with TensorFlow.NET. diff --git a/docs/README-CN.md b/docs/README-CN.md new file mode 100644 index 00000000..6fcb5195 --- /dev/null +++ b/docs/README-CN.md @@ -0,0 +1,215 @@ + + +**Tensorflow.NET**是AI框架[TensorFlow](https://www.tensorflow.org/)在.NET平台上的实现,支持C#和F#,可以用来搭建深度学习模型并进行训练和推理,并内置了Numpy API,可以用来进行其它科学计算。 + +Tensorflow.NET并非对于Python的简单封装,而是基于C API的pure C#实现,因此使用时无需额外的环境,可以很方便地用NuGet直接安装使用。并且dotnet团队提供的[ML.NET](https://github.com/dotnet/machinelearning)也依赖于Tensorflow.NET,支持调用Tensorflow.NET进行训练和推理,可以很方便地融入.NET生态。 + +与tensorflow相同,Tensorflow.NET也内置了Keras这一高级API,只要在安装Tensorflow.NET的同时安装Tensorflow.Keras就可以使用,Keras支持以模块化的方式调用模型,给模型的搭建提供了极大的便利。 + +[](https://gitter.im/sci-sharp/community) +[](https://ci.appveyor.com/project/Haiping-Chen/tensorflow-net) +[](https://www.nuget.org/packages/TensorFlow.NET) +[](https://tensorflownet.readthedocs.io/en/latest/?badge=latest) +[](https://996.icu/#/en_US) +[](https://mybinder.org/v2/gh/javiercp/BinderTF.NET/master?urlpath=lab) + +中文 | [English](https://github.com/SciSharp/TensorFlow.NET#readme) + +*当前主分支与Tensorflow2.10版本相对应,支持Eager Mode,同时也支持v1的静态图。* + + + + +### Why TensorFlow.NET? + +`SciSharp STACK`开源社区的目标是构建.NET平台下易用的科学计算库,而Tensorflow.NET就是其中最具代表性的仓库之一。在深度学习领域Python是主流,无论是初学者还是资深开发者,模型的搭建和训练都常常使用Python写就的AI框架,比如tensorflow。但在实际应用深度学习模型的时候,又可能希望用到.NET生态,亦或只是因为.NET是自己最熟悉的领域,这时候Tensorflow.NET就有显著的优点,因为它不仅可以和.NET生态很好地贴合,其API还使得开发者很容易将Python代码迁移过来。下面的对比就是很好的例子,Python代码和C#代码有着高度相似的API,这会使得迁移的时候无需做过多修改。 + + + +除了高度相似的API外,Tensorflow.NET与tensorflow也已经打通数据通道,tensorflow训练并保存的模型可以在Tensorflow.NET中直接读取并继续训练或推理,反之Tensorflow.NET保存的模型也可以在tensorflow中读取,这大大方便了模型的训练和部署。 + +与其它类似的库比如[TensorFlowSharp](https://www.nuget.org/packages/TensorFlowSharp/)相比,Tensorflow.NET的实现更加完全,提供了更多的高级API,使用起来更为方便,更新也更加迅速。 + + +### 文档 + +基本介绍与简单用例:[Tensorflow.NET Documents](https://scisharp.github.io/tensorflow-net-docs) + +详细文档:[The Definitive Guide to Tensorflow.NET](https://tensorflownet.readthedocs.io/en/latest/FrontCover.html) + +例程:[TensorFlow.NET Examples](https://github.com/SciSharp/TensorFlow.NET-Examples) + +运行例程常见问题:[Tensorflow.NET FAQ](tensorflowlib/README.md) + +### 安装与使用 + +安装可以在NuGet包管理器中搜索包名安装,也可以用下面命令行的方式。 + +安装分为两个部分,第一部分是Tensorflow.NET的主体: + +```sh +### 安装Tensorflow.NET +PM> Install-Package TensorFlow.NET +### 安装Tensorflow.Keras +PM> Install-Package TensorFlow.Keras +``` + +第二部分是计算支持部分,只需要根据自己的设备和系统选择下面之一即可: + +``` +### CPU版本 +PM> Install-Package SciSharp.TensorFlow.Redist + +### Windows下的GPU版本(需要安装CUDA和CUDNN) +PM> Install-Package SciSharp.TensorFlow.Redist-Windows-GPU + +### Linux下的GPU版本(需要安装CUDA和CUDNN) +PM> Install-Package SciSharp.TensorFlow.Redist-Linux-GPU +``` + +下面给出两个简单的例子,更多例子可以在[TensorFlow.NET Examples]中查看。 + +#### 简单例子(使用Eager Mode进行线性回归) + +```csharp +using static Tensorflow.Binding; +using static Tensorflow.KerasApi; +using Tensorflow; +using Tensorflow.NumPy; + +// Parameters +var training_steps = 1000; +var learning_rate = 0.01f; +var display_step = 100; + +// Sample data +var X = np.array(3.3f, 4.4f, 5.5f, 6.71f, 6.93f, 4.168f, 9.779f, 6.182f, 7.59f, 2.167f, + 7.042f, 10.791f, 5.313f, 7.997f, 5.654f, 9.27f, 3.1f); +var Y = np.array(1.7f, 2.76f, 2.09f, 3.19f, 1.694f, 1.573f, 3.366f, 2.596f, 2.53f, 1.221f, + 2.827f, 3.465f, 1.65f, 2.904f, 2.42f, 2.94f, 1.3f); +var n_samples = X.shape[0]; + +// We can set a fixed init value in order to demo +var W = tf.Variable(-0.06f, name: "weight"); +var b = tf.Variable(-0.73f, name: "bias"); +var optimizer = keras.optimizers.SGD(learning_rate); + +// Run training for the given number of steps. +foreach (var step in range(1, training_steps + 1)) +{ + // Run the optimization to update W and b values. + // Wrap computation inside a GradientTape for automatic differentiation. + using var g = tf.GradientTape(); + // Linear regression (Wx + b). + var pred = W * X + b; + // Mean square error. + var loss = tf.reduce_sum(tf.pow(pred - Y, 2)) / (2 * n_samples); + // should stop recording + // Compute gradients. + var gradients = g.gradient(loss, (W, b)); + + // Update W and b following gradients. + optimizer.apply_gradients(zip(gradients, (W, b))); + + if (step % display_step == 0) + { + pred = W * X + b; + loss = tf.reduce_sum(tf.pow(pred - Y, 2)) / (2 * n_samples); + print($"step: {step}, loss: {loss.numpy()}, W: {W.numpy()}, b: {b.numpy()}"); + } +} +``` + +这一用例也可以在[Jupyter Notebook Example](https://github.com/SciSharp/SciSharpCube)进行运行. + +#### 简单例子(使用Keras搭建Resnet) + +```csharp +using static Tensorflow.Binding; +using static Tensorflow.KerasApi; +using Tensorflow; +using Tensorflow.NumPy; + +var layers = new LayersApi(); +// input layer +var inputs = keras.Input(shape: (32, 32, 3), name: "img"); +// convolutional layer +var x = layers.Conv2D(32, 3, activation: "relu").Apply(inputs); +x = layers.Conv2D(64, 3, activation: "relu").Apply(x); +var block_1_output = layers.MaxPooling2D(3).Apply(x); +x = layers.Conv2D(64, 3, activation: "relu", padding: "same").Apply(block_1_output); +x = layers.Conv2D(64, 3, activation: "relu", padding: "same").Apply(x); +var block_2_output = layers.Add().Apply(new Tensors(x, block_1_output)); +x = layers.Conv2D(64, 3, activation: "relu", padding: "same").Apply(block_2_output); +x = layers.Conv2D(64, 3, activation: "relu", padding: "same").Apply(x); +var block_3_output = layers.Add().Apply(new Tensors(x, block_2_output)); +x = layers.Conv2D(64, 3, activation: "relu").Apply(block_3_output); +x = layers.GlobalAveragePooling2D().Apply(x); +x = layers.Dense(256, activation: "relu").Apply(x); +x = layers.Dropout(0.5f).Apply(x); +// output layer +var outputs = layers.Dense(10).Apply(x); +// build keras model +var model = keras.Model(inputs, outputs, name: "toy_resnet"); +model.summary(); +// compile keras model in tensorflow static graph +model.compile(optimizer: keras.optimizers.RMSprop(1e-3f), + loss: keras.losses.CategoricalCrossentropy(from_logits: true), + metrics: new[] { "acc" }); +// prepare dataset +var ((x_train, y_train), (x_test, y_test)) = keras.datasets.cifar10.load_data(); +x_train = x_train / 255.0f; +y_train = np_utils.to_categorical(y_train, 10); +// training +model.fit(x_train[new Slice(0, 2000)], y_train[new Slice(0, 2000)], + batch_size: 64, + epochs: 10, + validation_split: 0.2f); +``` + +此外,Tensorflow.NET也支持用F#搭建上述模型进行训练和推理。 + +### Tensorflow.NET版本对应关系 + +| TensorFlow.NET Versions | tensorflow 1.14, cuda 10.0 | tensorflow 1.15, cuda 10.0 | tensorflow 2.3, cuda 10.1 | tensorflow 2.4, cuda 11 | tensorflow 2.10, cuda 11 | +| -------------------------- | ------------- | -------------- | ------------- | ------------- | ------------ | +| tf.net 0.7+, tf.keras 0.7+ | | | | | x | +| tf.net 0.4x, tf.keras 0.5 | | | | x | | +| tf.net 0.3x, tf.keras 0.4 | | | x | | | +| tf.net 0.2x | | x | x | | | +| tf.net 0.15 | x | x | | | | +| tf.net 0.14 | x | | | | | + +如果使用过程中发现有缺失的版本,请告知我们,谢谢! + +请注意Tensorflow.NET与Tensorflow.Keras版本存在一一对应关系,请安装与Tensorflow.NET对应的Tensorflow.Keras版本。 + +### 参与我们的开发: + +我们欢迎任何人的任何形式的贡献!无论是文档中的错误纠正,新特性提议,还是BUG修复等等,都会使得Tensorflow.NET项目越来越好,Tensorflow.NET的全体开发者也会积极帮助解决您提出的问题。 + +下面任何一种形式都可以帮助Tensorflow.NET越来越好: + +* Star和分享Tensorflow.NET项目 +* 为Tensorflow.NET添加更多的用例 +* 在issue中告知我们Tensorflow.NET目前相比tensorflow缺少的API或者没有对齐的特性 +* 在issue中提出Tensorflow.NET存在的BUG或者可以改进的地方 +* 在待办事项清单中选择一个进行或者解决某个issue +* 帮助我们完善文档,这也十分重要 + + +### 支持我们 +我们推出了[TensorFlow.NET实战](https://item.jd.com/13441549.html)这本书,包含了Tensorflow.NET主要开发者编写的讲解与实战例程,欢迎您的购买,希望这本书可以给您带来帮助。 +
+
+
+
+