|
|
@@ -6154,11 +6154,11 @@ namespace Tensorflow.Operations |
|
|
|
/// in normalized coordinates <c>[y1, x1, y2, x2]</c>. A normalized coordinate value of |
|
|
|
/// <c>y</c> is mapped to the image coordinate at <c>y * (image_height - 1)</c>, so as the |
|
|
|
/// <c>[0, 1]</c> interval of normalized image height is mapped to |
|
|
|
/// <c>[0, image_height - 1] in image height coordinates. We do allow y1 &gt; y2, in |
|
|
|
/// <c>[0, image_height - 1]</c> in image height coordinates. We do allow y1 &gt; y2, in |
|
|
|
/// which case the sampled crop is an up-down flipped version of the original |
|
|
|
/// image. The width dimension is treated similarly. Normalized coordinates |
|
|
|
/// outside the </c>[0, 1]<c> range are allowed, in which case we use |
|
|
|
/// </c>extrapolation_value<c> to extrapolate the input image values. |
|
|
|
/// outside the <c>[0, 1]</c> range are allowed, in which case we use |
|
|
|
/// <c>extrapolation_value</c> to extrapolate the input image values. |
|
|
|
/// </param> |
|
|
|
/// <param name="box_ind"> |
|
|
|
/// A 1-D tensor of shape <c>[num_boxes]</c> with int32 values in <c>[0, batch)</c>. |
|
|
@@ -6200,11 +6200,11 @@ namespace Tensorflow.Operations |
|
|
|
/// in normalized coordinates <c>[y1, x1, y2, x2]</c>. A normalized coordinate value of |
|
|
|
/// <c>y</c> is mapped to the image coordinate at <c>y * (image_height - 1)</c>, so as the |
|
|
|
/// <c>[0, 1]</c> interval of normalized image height is mapped to |
|
|
|
/// <c>[0, image_height - 1] in image height coordinates. We do allow y1 &gt; y2, in |
|
|
|
/// <c>[0, image_height - 1]</c> in image height coordinates. We do allow y1 &gt; y2, in |
|
|
|
/// which case the sampled crop is an up-down flipped version of the original |
|
|
|
/// image. The width dimension is treated similarly. Normalized coordinates |
|
|
|
/// outside the </c>[0, 1]<c> range are allowed, in which case we use |
|
|
|
/// </c>extrapolation_value<c> to extrapolate the input image values. |
|
|
|
/// outside the <c>[0, 1]</c> range are allowed, in which case we use |
|
|
|
/// <c>extrapolation_value</c> to extrapolate the input image values. |
|
|
|
/// </param> |
|
|
|
/// <param name="box_ind"> |
|
|
|
/// A 1-D tensor of shape <c>[num_boxes]</c> with int32 values in <c>[0, batch)</c>. |
|
|
@@ -15982,9 +15982,9 @@ namespace Tensorflow.Operations |
|
|
|
/// everything else padded with zeros. The diagonal is computed as follows: |
|
|
|
/// |
|
|
|
/// Assume <c>diagonal</c> has <c>k</c> dimensions <c>[I, J, K, ..., N]</c>, then the output is a |
|
|
|
/// tensor of rank <c>k+1</c> with dimensions [I, J, K, ..., N, N]<c> where: |
|
|
|
/// tensor of rank <c>k+1</c> with dimensions <c>[I, J, K, ..., N, N]</c> where: |
|
|
|
/// |
|
|
|
/// </c>output[i, j, k, ..., m, n] = 1{m=n} * diagonal[i, j, k, ..., n]<c>. |
|
|
|
/// <c>output[i, j, k, ..., m, n] = 1{m=n} * diagonal[i, j, k, ..., n]</c>. |
|
|
|
/// |
|
|
|
/// For example: |
|
|
|
/// |
|
|
@@ -18540,7 +18540,8 @@ namespace Tensorflow.Operations |
|
|
|
/// ][ |
|
|
|
/// [0.0, 1.0, 0.0] // one_hot(1) |
|
|
|
/// [0.0, 0.0, 0.0] // one_hot(-1) |
|
|
|
/// ]<c></c><c> |
|
|
|
/// ] |
|
|
|
/// </code> |
|
|
|
/// </remarks> |
|
|
|
public static Tensor one_hot (Tensor indices, Tensor depth, Tensor on_value, Tensor off_value, int? axis = null, string name = "OneHot") |
|
|
|
{ |
|
|
@@ -21850,7 +21851,6 @@ namespace Tensorflow.Operations |
|
|
|
/// The Operation can be fetched from any of the Tensorreturned in the tuple values, by fetching the Operation property. |
|
|
|
/// </returns> |
|
|
|
/// <remarks> |
|
|
|
/// <code> |
|
|
|
/// </remarks> |
|
|
|
public static (Tensor output, Tensor output_min, Tensor output_max) quantized_reshape (Tensor tensor, Tensor shape, Tensor input_min, Tensor input_max, string name = "QuantizedReshape") |
|
|
|
{ |
|
|
@@ -26970,10 +26970,10 @@ namespace Tensorflow.Operations |
|
|
|
/// <remarks> |
|
|
|
/// The values of <c>value</c> are assigned to the positions in the variable |
|
|
|
/// <c>ref</c> that are selected by the slice parameters. The slice parameters |
|
|
|
/// <c>begin, </c>end<c>, </c>strides<c>, etc. work exactly as in </c>StridedSlice<c>. |
|
|
|
/// <c>begin</c>, <c>end</c>, <c>strides</c>, etc. work exactly as in <c>StridedSlice</c>. |
|
|
|
/// |
|
|
|
/// NOTE this op currently does not support broadcasting and so </c>value<c>'s |
|
|
|
/// shape must be exactly the shape produced by the slice of </c>ref<c>. |
|
|
|
/// NOTE this op currently does not support broadcasting and so <c>value</c>'s |
|
|
|
/// shape must be exactly the shape produced by the slice of <c>ref</c>. |
|
|
|
/// </remarks> |
|
|
|
public static Operation resource_strided_slice_assign (Tensor referecne, Tensor begin, Tensor end, Tensor strides, Tensor value, int? begin_mask = null, int? end_mask = null, int? ellipsis_mask = null, int? new_axis_mask = null, int? shrink_axis_mask = null, string name = "ResourceStridedSliceAssign") |
|
|
|
{ |
|
|
@@ -28068,7 +28068,7 @@ namespace Tensorflow.Operations |
|
|
|
/// Tags for the summary. |
|
|
|
/// </param> |
|
|
|
/// <param name="values"> |
|
|
|
/// Same shape as <c>tags. Values for the summary. |
|
|
|
/// Same shape as <c>tags</c>. Values for the summary. |
|
|
|
/// </param> |
|
|
|
/// <param name="name"> |
|
|
|
/// If specified, the created operation in the graph will be this one, otherwise it will be named 'ScalarSummary'. |
|
|
@@ -34548,10 +34548,10 @@ namespace Tensorflow.Operations |
|
|
|
/// <remarks> |
|
|
|
/// The values of <c>value</c> are assigned to the positions in the variable |
|
|
|
/// <c>ref</c> that are selected by the slice parameters. The slice parameters |
|
|
|
/// <c>begin, </c>end<c>, </c>strides<c>, etc. work exactly as in </c>StridedSlice<c>. |
|
|
|
/// <c>begin</c>, <c>end</c>, <c>strides</c>, etc. work exactly as in <c>StridedSlice</c>. |
|
|
|
/// |
|
|
|
/// NOTE this op currently does not support broadcasting and so </c>value<c>'s |
|
|
|
/// shape must be exactly the shape produced by the slice of </c>ref<c>. |
|
|
|
/// NOTE this op currently does not support broadcasting and so <c>value</c>'s |
|
|
|
/// shape must be exactly the shape produced by the slice of <c>ref</c>. |
|
|
|
/// </remarks> |
|
|
|
public static Tensor strided_slice_assign (Tensor referecne, Tensor begin, Tensor end, Tensor strides, Tensor value, int? begin_mask = null, int? end_mask = null, int? ellipsis_mask = null, int? new_axis_mask = null, int? shrink_axis_mask = null, string name = "StridedSliceAssign") |
|
|
|
{ |
|
|
@@ -36554,21 +36554,21 @@ namespace Tensorflow.Operations |
|
|
|
/// and that <c>value</c> has shape |
|
|
|
/// |
|
|
|
/// <code> |
|
|
|
/// (n0 + n1 + ... + n(T-1) x d0 x d1 x ...)<c></c><c>, |
|
|
|
/// (n0 + n1 + ... + n(T-1) x d0 x d1 x ...)</code>, |
|
|
|
/// |
|
|
|
/// this splits values into a TensorArray with T tensors. |
|
|
|
/// |
|
|
|
/// TensorArray index t will be the subtensor of values with starting position |
|
|
|
/// |
|
|
|
/// </code> |
|
|
|
/// <code> |
|
|
|
/// (n0 + n1 + ... + n(t-1), 0, 0, ...) |
|
|
|
/// <code> |
|
|
|
/// </code> |
|
|
|
/// |
|
|
|
/// and having size |
|
|
|
/// |
|
|
|
/// </code> |
|
|
|
/// <code> |
|
|
|
/// nt x d0 x d1 x ... |
|
|
|
/// <code> |
|
|
|
/// </code> |
|
|
|
/// </remarks> |
|
|
|
public static Tensor tensor_array_split_v3 (Tensor handle, Tensor value, Tensor lengths, Tensor flow_in, string name = "TensorArraySplitV3") |
|
|
|
{ |
|
|
@@ -38107,9 +38107,9 @@ namespace Tensorflow.Operations |
|
|
|
/// This operation also returns a tensor <c>idx</c> that is the same size as |
|
|
|
/// the number of the elements in <c>x</c> along the <c>axis</c> dimension. It |
|
|
|
/// contains the index in the unique output <c>y</c>. |
|
|
|
/// In other words, for an <c>1-D</c> tensor <c>x</c> with <c>axis = None: |
|
|
|
/// In other words, for an <c>1-D</c> tensor <c>x</c> with <c>axis = None</c>: |
|
|
|
/// |
|
|
|
/// </c>y[idx[i]] = x[i] for i in [0, 1,...,rank(x) - 1]<c> |
|
|
|
/// <c>y[idx[i]] = x[i] for i in [0, 1,...,rank(x) - 1]</c> |
|
|
|
/// |
|
|
|
/// For example: |
|
|
|
/// |
|
|
@@ -38120,7 +38120,7 @@ namespace Tensorflow.Operations |
|
|
|
/// idx ==&gt; [0, 0, 1, 2, 2, 2, 3, 4, 4] |
|
|
|
/// </code> |
|
|
|
/// |
|
|
|
/// For an </c>2-D<c> tensor </c>x<c> with </c>axis = 0<c>: |
|
|
|
/// For an <c>2-D</c> tensor <c>x</c> with <c>axis = 0</c>: |
|
|
|
/// |
|
|
|
/// <code> |
|
|
|
/// # tensor 'x' is [[1, 0, 0], |
|
|
@@ -38132,7 +38132,7 @@ namespace Tensorflow.Operations |
|
|
|
/// idx ==&gt; [0, 0, 1] |
|
|
|
/// </code> |
|
|
|
/// |
|
|
|
/// For an </c>2-D<c> tensor </c>x<c> with </c>axis = 1<c>: |
|
|
|
/// For an <c>2-D</c> tensor <c>x</c> with <c>axis = 1</c>: |
|
|
|
/// |
|
|
|
/// <code> |
|
|
|
/// # tensor 'x' is [[1, 0, 0], |
|
|
@@ -38241,9 +38241,9 @@ namespace Tensorflow.Operations |
|
|
|
/// that are the same size as the number of the elements in <c>x</c> along the |
|
|
|
/// <c>axis</c> dimension. The <c>idx</c> contains the index in the unique output <c>y</c> |
|
|
|
/// and the <c>count</c> contains the count in the unique output <c>y</c>. |
|
|
|
/// In other words, for an <c>1-D</c> tensor <c>x</c> with <c>axis = None: |
|
|
|
/// In other words, for an <c>1-D</c> tensor <c>x</c> with <c>axis = None</c>: |
|
|
|
/// |
|
|
|
/// </c>y[idx[i]] = x[i] for i in [0, 1,...,rank(x) - 1]<c> |
|
|
|
/// <c>y[idx[i]] = x[i] for i in [0, 1,...,rank(x) - 1]</c> |
|
|
|
/// |
|
|
|
/// For example: |
|
|
|
/// |
|
|
@@ -38255,7 +38255,7 @@ namespace Tensorflow.Operations |
|
|
|
/// count ==&gt; [2, 1, 3, 1, 2] |
|
|
|
/// </code> |
|
|
|
/// |
|
|
|
/// For an </c>2-D<c> tensor </c>x<c> with </c>axis = 0<c>: |
|
|
|
/// For an <c>2-D</c> tensor <c>x</c> with <c>axis = 0</c>: |
|
|
|
/// |
|
|
|
/// <code> |
|
|
|
/// # tensor 'x' is [[1, 0, 0], |
|
|
@@ -38268,7 +38268,7 @@ namespace Tensorflow.Operations |
|
|
|
/// count ==&gt; [2, 1] |
|
|
|
/// </code> |
|
|
|
/// |
|
|
|
/// For an </c>2-D<c> tensor </c>x<c> with </c>axis = 1<c>: |
|
|
|
/// For an <c>2-D</c> tensor <c>x</c> with <c>axis = 1</c>: |
|
|
|
/// |
|
|
|
/// <code> |
|
|
|
/// # tensor 'x' is [[1, 0, 0], |
|
|
|