diff --git a/Directory.Build.props b/Directory.Build.props
index 48257d5d..065690ec 100644
--- a/Directory.Build.props
+++ b/Directory.Build.props
@@ -12,13 +12,6 @@
-->
true
$(NoWarn),1573,1591,1712
-
-
- $(NoWarn),1570
diff --git a/src/TensorFlowNET.Core/APIs/tf.array.cs b/src/TensorFlowNET.Core/APIs/tf.array.cs
index 59689bc5..6a186a63 100644
--- a/src/TensorFlowNET.Core/APIs/tf.array.cs
+++ b/src/TensorFlowNET.Core/APIs/tf.array.cs
@@ -48,7 +48,7 @@ namespace Tensorflow
///
///
/// N-D tensor.
- /// K-D boolean tensor, K <= N and K must be known statically.
+ /// K-D boolean tensor, K <= N and K must be known statically.
///
/// A 0-D int Tensor representing the axis in tensor to mask from.
/// (N-K+1)-dimensional tensor populated by entries in tensor corresponding to True values in mask.
diff --git a/src/TensorFlowNET.Core/APIs/tf.math.cs b/src/TensorFlowNET.Core/APIs/tf.math.cs
index f960e14c..23f7753b 100644
--- a/src/TensorFlowNET.Core/APIs/tf.math.cs
+++ b/src/TensorFlowNET.Core/APIs/tf.math.cs
@@ -170,7 +170,7 @@ namespace Tensorflow
=> gen_math_ops.greater_equal(x, y, name);
///
- /// Returns the truth value of (x < y) element-wise.
+ /// Returns the truth value of (x < y) element-wise.
///
///
///
@@ -191,7 +191,7 @@ namespace Tensorflow
=> gen_math_ops.lgamma(x, name: name);
///
- /// Returns the truth value of (x <= y) element-wise.
+ /// Returns the truth value of (x <= y) element-wise.
///
///
///
@@ -344,7 +344,7 @@ namespace Tensorflow
=> gen_math_ops.maximum(x, y, name: name);
///
- /// Returns the min of x and y (i.e. x < y ? x : y) element-wise.
+ /// Returns the min of x and y (i.e. x < y ? x : y) element-wise.
///
///
///
diff --git a/src/TensorFlowNET.Core/Eager/c_api.eager.cs b/src/TensorFlowNET.Core/Eager/c_api.eager.cs
index c14c4e99..af652824 100644
--- a/src/TensorFlowNET.Core/Eager/c_api.eager.cs
+++ b/src/TensorFlowNET.Core/Eager/c_api.eager.cs
@@ -231,7 +231,7 @@ namespace Tensorflow
///
///
///
- /// const tensorflow::Tensor&
+ /// const tensorflow::Tensor&
/// TFE_TensorHandle*
[DllImport(TensorFlowLibName)]
public static extern TFE_TensorHandle TFE_NewTensorHandle(IntPtr t, SafeStatusHandle status);
diff --git a/src/TensorFlowNET.Core/Gradients/math_grad.cs b/src/TensorFlowNET.Core/Gradients/math_grad.cs
index 12205dba..c40efc33 100644
--- a/src/TensorFlowNET.Core/Gradients/math_grad.cs
+++ b/src/TensorFlowNET.Core/Gradients/math_grad.cs
@@ -393,7 +393,7 @@ namespace Tensorflow.Gradients
}
///
- /// Returns grad*(x > y, x <= y) with type of grad.
+ /// Returns grad*(x > y, x <= y) with type of grad.
///
///
///
@@ -405,7 +405,7 @@ namespace Tensorflow.Gradients
}
///
- /// Returns grad*(x < y, x >= y) with type of grad.
+ /// Returns grad*(x < y, x >= y) with type of grad.
///
///
///
diff --git a/src/TensorFlowNET.Core/Operations/gen_logging_ops.cs b/src/TensorFlowNET.Core/Operations/gen_logging_ops.cs
index dc2853cb..8d4353f8 100644
--- a/src/TensorFlowNET.Core/Operations/gen_logging_ops.cs
+++ b/src/TensorFlowNET.Core/Operations/gen_logging_ops.cs
@@ -45,7 +45,7 @@ namespace Tensorflow
/// Tags for the summary.
///
///
- /// Same shape as tags. Values for the summary.
+ /// Same shape as tags. Values for the summary.
///
///
/// If specified, the created operation in the graph will be this one, otherwise it will be named 'ScalarSummary'.
diff --git a/src/TensorFlowNET.Core/Operations/gen_ops.cs b/src/TensorFlowNET.Core/Operations/gen_ops.cs
index 14b5700b..386537b7 100644
--- a/src/TensorFlowNET.Core/Operations/gen_ops.cs
+++ b/src/TensorFlowNET.Core/Operations/gen_ops.cs
@@ -6154,11 +6154,11 @@ namespace Tensorflow.Operations
/// in normalized coordinates [y1, x1, y2, x2]. A normalized coordinate value of
/// y is mapped to the image coordinate at y * (image_height - 1), so as the
/// [0, 1] interval of normalized image height is mapped to
- /// [0, image_height - 1] in image height coordinates. We do allow y1 > y2, in
+ /// [0, image_height - 1] in image height coordinates. We do allow y1 > y2, in
/// which case the sampled crop is an up-down flipped version of the original
/// image. The width dimension is treated similarly. Normalized coordinates
- /// outside the [0, 1] range are allowed, in which case we use
- /// extrapolation_value to extrapolate the input image values.
+ /// outside the [0, 1] range are allowed, in which case we use
+ /// extrapolation_value to extrapolate the input image values.
///
///
/// A 1-D tensor of shape [num_boxes] with int32 values in [0, batch).
@@ -6200,11 +6200,11 @@ namespace Tensorflow.Operations
/// in normalized coordinates [y1, x1, y2, x2]. A normalized coordinate value of
/// y is mapped to the image coordinate at y * (image_height - 1), so as the
/// [0, 1] interval of normalized image height is mapped to
- /// [0, image_height - 1] in image height coordinates. We do allow y1 > y2, in
+ /// [0, image_height - 1] in image height coordinates. We do allow y1 > y2, in
/// which case the sampled crop is an up-down flipped version of the original
/// image. The width dimension is treated similarly. Normalized coordinates
- /// outside the [0, 1] range are allowed, in which case we use
- /// extrapolation_value to extrapolate the input image values.
+ /// outside the [0, 1] range are allowed, in which case we use
+ /// extrapolation_value to extrapolate the input image values.
///
///
/// A 1-D tensor of shape [num_boxes] with int32 values in [0, batch).
@@ -15982,9 +15982,9 @@ namespace Tensorflow.Operations
/// everything else padded with zeros. The diagonal is computed as follows:
///
/// Assume diagonal has k dimensions [I, J, K, ..., N], then the output is a
- /// tensor of rank k+1 with dimensions [I, J, K, ..., N, N] where:
+ /// tensor of rank k+1 with dimensions [I, J, K, ..., N, N] where:
///
- /// output[i, j, k, ..., m, n] = 1{m=n} * diagonal[i, j, k, ..., n].
+ /// output[i, j, k, ..., m, n] = 1{m=n} * diagonal[i, j, k, ..., n].
///
/// For example:
///
@@ -18540,7 +18540,8 @@ namespace Tensorflow.Operations
/// ][
/// [0.0, 1.0, 0.0] // one_hot(1)
/// [0.0, 0.0, 0.0] // one_hot(-1)
- /// ]
+ /// ]
+ ///
///
public static Tensor one_hot (Tensor indices, Tensor depth, Tensor on_value, Tensor off_value, int? axis = null, string name = "OneHot")
{
@@ -21850,7 +21851,6 @@ namespace Tensorflow.Operations
/// The Operation can be fetched from any of the Tensorreturned in the tuple values, by fetching the Operation property.
///
///
- ///
///
public static (Tensor output, Tensor output_min, Tensor output_max) quantized_reshape (Tensor tensor, Tensor shape, Tensor input_min, Tensor input_max, string name = "QuantizedReshape")
{
@@ -26970,10 +26970,10 @@ namespace Tensorflow.Operations
///
/// The values of value are assigned to the positions in the variable
/// ref that are selected by the slice parameters. The slice parameters
- /// begin, end, strides, etc. work exactly as in StridedSlice.
+ /// begin, end, strides, etc. work exactly as in StridedSlice.
///
- /// NOTE this op currently does not support broadcasting and so value's
- /// shape must be exactly the shape produced by the slice of ref.
+ /// NOTE this op currently does not support broadcasting and so value's
+ /// shape must be exactly the shape produced by the slice of ref.
///
public static Operation resource_strided_slice_assign (Tensor referecne, Tensor begin, Tensor end, Tensor strides, Tensor value, int? begin_mask = null, int? end_mask = null, int? ellipsis_mask = null, int? new_axis_mask = null, int? shrink_axis_mask = null, string name = "ResourceStridedSliceAssign")
{
@@ -28068,7 +28068,7 @@ namespace Tensorflow.Operations
/// Tags for the summary.
///
///
- /// Same shape as tags. Values for the summary.
+ /// Same shape as tags. Values for the summary.
///
///
/// If specified, the created operation in the graph will be this one, otherwise it will be named 'ScalarSummary'.
@@ -34548,10 +34548,10 @@ namespace Tensorflow.Operations
///
/// The values of value are assigned to the positions in the variable
/// ref that are selected by the slice parameters. The slice parameters
- /// begin, end, strides, etc. work exactly as in StridedSlice.
+ /// begin, end, strides, etc. work exactly as in StridedSlice.
///
- /// NOTE this op currently does not support broadcasting and so value's
- /// shape must be exactly the shape produced by the slice of ref.
+ /// NOTE this op currently does not support broadcasting and so value's
+ /// shape must be exactly the shape produced by the slice of ref.
///
public static Tensor strided_slice_assign (Tensor referecne, Tensor begin, Tensor end, Tensor strides, Tensor value, int? begin_mask = null, int? end_mask = null, int? ellipsis_mask = null, int? new_axis_mask = null, int? shrink_axis_mask = null, string name = "StridedSliceAssign")
{
@@ -36554,21 +36554,21 @@ namespace Tensorflow.Operations
/// and that value has shape
///
///
- /// (n0 + n1 + ... + n(T-1) x d0 x d1 x ...),
+ /// (n0 + n1 + ... + n(T-1) x d0 x d1 x ...)
,
///
/// this splits values into a TensorArray with T tensors.
///
/// TensorArray index t will be the subtensor of values with starting position
///
- ///
+ ///
/// (n0 + n1 + ... + n(t-1), 0, 0, ...)
- ///
+ ///
///
/// and having size
///
- ///
+ ///
/// nt x d0 x d1 x ...
- ///
+ ///
///
public static Tensor tensor_array_split_v3 (Tensor handle, Tensor value, Tensor lengths, Tensor flow_in, string name = "TensorArraySplitV3")
{
@@ -38107,9 +38107,9 @@ namespace Tensorflow.Operations
/// This operation also returns a tensor idx that is the same size as
/// the number of the elements in x along the axis dimension. It
/// contains the index in the unique output y.
- /// In other words, for an 1-D tensor x with axis = None:
+ /// In other words, for an 1-D tensor x with axis = None:
///
- /// y[idx[i]] = x[i] for i in [0, 1,...,rank(x) - 1]
+ /// y[idx[i]] = x[i] for i in [0, 1,...,rank(x) - 1]
///
/// For example:
///
@@ -38120,7 +38120,7 @@ namespace Tensorflow.Operations
/// idx ==> [0, 0, 1, 2, 2, 2, 3, 4, 4]
///
///
- /// For an 2-D tensor x with axis = 0:
+ /// For an 2-D tensor x with axis = 0:
///
///
/// # tensor 'x' is [[1, 0, 0],
@@ -38132,7 +38132,7 @@ namespace Tensorflow.Operations
/// idx ==> [0, 0, 1]
///
///
- /// For an 2-D tensor x with axis = 1:
+ /// For an 2-D tensor x with axis = 1:
///
///
/// # tensor 'x' is [[1, 0, 0],
@@ -38241,9 +38241,9 @@ namespace Tensorflow.Operations
/// that are the same size as the number of the elements in x along the
/// axis dimension. The idx contains the index in the unique output y
/// and the count contains the count in the unique output y.
- /// In other words, for an 1-D tensor x with axis = None:
+ /// In other words, for an 1-D tensor x with axis = None:
///
- /// y[idx[i]] = x[i] for i in [0, 1,...,rank(x) - 1]
+ /// y[idx[i]] = x[i] for i in [0, 1,...,rank(x) - 1]
///
/// For example:
///
@@ -38255,7 +38255,7 @@ namespace Tensorflow.Operations
/// count ==> [2, 1, 3, 1, 2]
///
///
- /// For an 2-D tensor x with axis = 0:
+ /// For an 2-D tensor x with axis = 0:
///
///
/// # tensor 'x' is [[1, 0, 0],
@@ -38268,7 +38268,7 @@ namespace Tensorflow.Operations
/// count ==> [2, 1]
///
///
- /// For an 2-D tensor x with axis = 1:
+ /// For an 2-D tensor x with axis = 1:
///
///
/// # tensor 'x' is [[1, 0, 0],
diff --git a/src/TensorFlowNET.Core/Operations/math_ops.cs b/src/TensorFlowNET.Core/Operations/math_ops.cs
index 6631e057..0c167691 100644
--- a/src/TensorFlowNET.Core/Operations/math_ops.cs
+++ b/src/TensorFlowNET.Core/Operations/math_ops.cs
@@ -406,10 +406,10 @@ namespace Tensorflow
/// Unless `keepdims` is true, the rank of the tensor is reduced by 1 for each
/// entry in `axis`. If `keepdims` is true, the reduced dimensions
/// are retained with length 1.
-
+ ///
/// If `axis` has no entries, all dimensions are reduced, and a
/// tensor with a single element is returned.
-
+ ///
/// This function is more numerically stable than log(sum(exp(input))). It avoids
/// overflows caused by taking the exp of large inputs and underflows caused by
/// taking the log of small inputs.
diff --git a/src/TensorFlowNET.Core/Status/c_api.status.cs b/src/TensorFlowNET.Core/Status/c_api.status.cs
index b5da21bf..7854481d 100644
--- a/src/TensorFlowNET.Core/Status/c_api.status.cs
+++ b/src/TensorFlowNET.Core/Status/c_api.status.cs
@@ -54,7 +54,7 @@ namespace Tensorflow
public static extern SafeStatusHandle TF_NewStatus();
///
- /// Record in *s. Any previous information is lost.
+ /// Record <code, msg> in *s. Any previous information is lost.
/// A common use is to clear a status: TF_SetStatus(s, TF_OK, "");
///
///
diff --git a/src/TensorFlowNET.Core/Summaries/Summary.cs b/src/TensorFlowNET.Core/Summaries/Summary.cs
index 39a8c10a..a1f47bc0 100644
--- a/src/TensorFlowNET.Core/Summaries/Summary.cs
+++ b/src/TensorFlowNET.Core/Summaries/Summary.cs
@@ -74,7 +74,7 @@ namespace Tensorflow.Summaries
///
/// Adds keys to a collection.
///
- ///
+ /// The value to add per each key.
/// A collection of keys to add.
/// Used if collections is None.
public void collect(ITensorOrOperation val, List collections, List default_collections)
diff --git a/src/TensorFlowNET.Core/Tensors/c_api.tensor.cs b/src/TensorFlowNET.Core/Tensors/c_api.tensor.cs
index dc8d795a..cf3c00c8 100644
--- a/src/TensorFlowNET.Core/Tensors/c_api.tensor.cs
+++ b/src/TensorFlowNET.Core/Tensors/c_api.tensor.cs
@@ -56,7 +56,7 @@ namespace Tensorflow
///
/// Return the length of the tensor in the "dim_index" dimension.
- /// REQUIRES: 0 <= dim_index < TF_NumDims(tensor)
+ /// REQUIRES: 0 <= dim_index < TF_NumDims(tensor)
///
///
///
diff --git a/src/TensorFlowNET.Core/ops.cs b/src/TensorFlowNET.Core/ops.cs
index d0eba736..87b0cfa1 100644
--- a/src/TensorFlowNET.Core/ops.cs
+++ b/src/TensorFlowNET.Core/ops.cs
@@ -124,7 +124,7 @@ namespace Tensorflow
/// Wrapper for `Graph.control_dependencies()` using the default graph.
///
/// See `tf.Graph.control_dependencies` for more details.
-
+ ///
/// When eager execution is enabled, any callable object in the `control_inputs`
/// list will be called.
///