Browse Source

Move to ModelLoadTest

pull/1248/head
Sean Chen 1 year ago
parent
commit
29282d5b23
2 changed files with 49 additions and 7 deletions
  1. +48
    -0
      test/TensorFlowNET.Keras.UnitTest/Model/ModelLoadTest.cs
  2. +1
    -7
      test/TensorFlowNET.Keras.UnitTest/Model/ModelSaveTest.cs

+ 48
- 0
test/TensorFlowNET.Keras.UnitTest/Model/ModelLoadTest.cs View File

@@ -1,6 +1,7 @@
using Microsoft.VisualStudio.TestPlatform.Utilities; using Microsoft.VisualStudio.TestPlatform.Utilities;
using Microsoft.VisualStudio.TestTools.UnitTesting; using Microsoft.VisualStudio.TestTools.UnitTesting;
using Newtonsoft.Json.Linq; using Newtonsoft.Json.Linq;
using System.Collections.Generic;
using System.Linq; using System.Linq;
using System.Xml.Linq; using System.Xml.Linq;
using Tensorflow.Keras.Engine; using Tensorflow.Keras.Engine;
@@ -129,6 +130,53 @@ public class ModelLoadTest
} }




[TestMethod]
public void BiasRegularizerSaveAndLoad()
{
var savemodel = keras.Sequential(new List<ILayer>()
{
tf.keras.layers.InputLayer((227, 227, 3)),
tf.keras.layers.Conv2D(96, (11, 11), (4, 4), activation:"relu", padding:"valid"),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.MaxPooling2D((3, 3), strides:(2, 2)),

tf.keras.layers.Conv2D(256, (5, 5), (1, 1), "same", activation: keras.activations.Relu, bias_regularizer:keras.regularizers.L1L2),
tf.keras.layers.BatchNormalization(),

tf.keras.layers.Conv2D(256, (5, 5), (1, 1), "same", activation: keras.activations.Relu, bias_regularizer:keras.regularizers.L2),
tf.keras.layers.BatchNormalization(),

tf.keras.layers.Conv2D(256, (5, 5), (1, 1), "same", activation: keras.activations.Relu, bias_regularizer:keras.regularizers.L1),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.MaxPooling2D((3, 3), (2, 2)),

tf.keras.layers.Flatten(),

tf.keras.layers.Dense(1000, activation: "linear"),
tf.keras.layers.Softmax(1)
});

savemodel.compile(tf.keras.optimizers.Adam(), tf.keras.losses.SparseCategoricalCrossentropy(from_logits: true), new string[] { "accuracy" });

var num_epochs = 1;
var batch_size = 8;

var trainDataset = new RandomDataSet(new Shape(227, 227, 3), 16);

savemodel.fit(trainDataset.Data, trainDataset.Labels, batch_size, num_epochs);

savemodel.save(@"./bias_regularizer_save_and_load", save_format: "tf");

var loadModel = tf.keras.models.load_model(@"./bias_regularizer_save_and_load");
loadModel.summary();

loadModel.compile(tf.keras.optimizers.Adam(), tf.keras.losses.SparseCategoricalCrossentropy(from_logits: true), new string[] { "accuracy" });

var fitDataset = new RandomDataSet(new Shape(227, 227, 3), 16);

loadModel.fit(fitDataset.Data, fitDataset.Labels, batch_size, num_epochs);
}



[TestMethod] [TestMethod]
public void CreateConcatenateModelSaveAndLoad() public void CreateConcatenateModelSaveAndLoad()


+ 1
- 7
test/TensorFlowNET.Keras.UnitTest/Model/ModelSaveTest.cs View File

@@ -109,13 +109,7 @@ namespace Tensorflow.Keras.UnitTest.Model
tf.keras.layers.BatchNormalization(), tf.keras.layers.BatchNormalization(),
tf.keras.layers.MaxPooling2D((3, 3), strides:(2, 2)), tf.keras.layers.MaxPooling2D((3, 3), strides:(2, 2)),


tf.keras.layers.Conv2D(256, (5, 5), (1, 1), "same", activation: keras.activations.Relu, bias_regularizer:keras.regularizers.L1L2),
tf.keras.layers.BatchNormalization(),

tf.keras.layers.Conv2D(256, (5, 5), (1, 1), "same", activation: keras.activations.Relu, bias_regularizer:keras.regularizers.L2),
tf.keras.layers.BatchNormalization(),

tf.keras.layers.Conv2D(256, (5, 5), (1, 1), "same", activation: keras.activations.Relu, bias_regularizer:keras.regularizers.L1),
tf.keras.layers.Conv2D(256, (5, 5), (1, 1), "same", activation: "relu"),
tf.keras.layers.BatchNormalization(), tf.keras.layers.BatchNormalization(),
tf.keras.layers.MaxPooling2D((3, 3), (2, 2)), tf.keras.layers.MaxPooling2D((3, 3), (2, 2)),




Loading…
Cancel
Save