diff --git a/test/TensorFlowNET.Keras.UnitTest/Model/ModelLoadTest.cs b/test/TensorFlowNET.Keras.UnitTest/Model/ModelLoadTest.cs index 53a67cbf..c733537e 100644 --- a/test/TensorFlowNET.Keras.UnitTest/Model/ModelLoadTest.cs +++ b/test/TensorFlowNET.Keras.UnitTest/Model/ModelLoadTest.cs @@ -1,6 +1,7 @@ using Microsoft.VisualStudio.TestPlatform.Utilities; using Microsoft.VisualStudio.TestTools.UnitTesting; using Newtonsoft.Json.Linq; +using System.Collections.Generic; using System.Linq; using System.Xml.Linq; using Tensorflow.Keras.Engine; @@ -129,6 +130,53 @@ public class ModelLoadTest } + [TestMethod] + public void BiasRegularizerSaveAndLoad() + { + var savemodel = keras.Sequential(new List() + { + tf.keras.layers.InputLayer((227, 227, 3)), + tf.keras.layers.Conv2D(96, (11, 11), (4, 4), activation:"relu", padding:"valid"), + tf.keras.layers.BatchNormalization(), + tf.keras.layers.MaxPooling2D((3, 3), strides:(2, 2)), + + tf.keras.layers.Conv2D(256, (5, 5), (1, 1), "same", activation: keras.activations.Relu, bias_regularizer:keras.regularizers.L1L2), + tf.keras.layers.BatchNormalization(), + + tf.keras.layers.Conv2D(256, (5, 5), (1, 1), "same", activation: keras.activations.Relu, bias_regularizer:keras.regularizers.L2), + tf.keras.layers.BatchNormalization(), + + tf.keras.layers.Conv2D(256, (5, 5), (1, 1), "same", activation: keras.activations.Relu, bias_regularizer:keras.regularizers.L1), + tf.keras.layers.BatchNormalization(), + tf.keras.layers.MaxPooling2D((3, 3), (2, 2)), + + tf.keras.layers.Flatten(), + + tf.keras.layers.Dense(1000, activation: "linear"), + tf.keras.layers.Softmax(1) + }); + + savemodel.compile(tf.keras.optimizers.Adam(), tf.keras.losses.SparseCategoricalCrossentropy(from_logits: true), new string[] { "accuracy" }); + + var num_epochs = 1; + var batch_size = 8; + + var trainDataset = new RandomDataSet(new Shape(227, 227, 3), 16); + + savemodel.fit(trainDataset.Data, trainDataset.Labels, batch_size, num_epochs); + + savemodel.save(@"./bias_regularizer_save_and_load", save_format: "tf"); + + var loadModel = tf.keras.models.load_model(@"./bias_regularizer_save_and_load"); + loadModel.summary(); + + loadModel.compile(tf.keras.optimizers.Adam(), tf.keras.losses.SparseCategoricalCrossentropy(from_logits: true), new string[] { "accuracy" }); + + var fitDataset = new RandomDataSet(new Shape(227, 227, 3), 16); + + loadModel.fit(fitDataset.Data, fitDataset.Labels, batch_size, num_epochs); + } + [TestMethod] public void CreateConcatenateModelSaveAndLoad() diff --git a/test/TensorFlowNET.Keras.UnitTest/Model/ModelSaveTest.cs b/test/TensorFlowNET.Keras.UnitTest/Model/ModelSaveTest.cs index bf27bb5f..793ce24d 100644 --- a/test/TensorFlowNET.Keras.UnitTest/Model/ModelSaveTest.cs +++ b/test/TensorFlowNET.Keras.UnitTest/Model/ModelSaveTest.cs @@ -109,13 +109,7 @@ namespace Tensorflow.Keras.UnitTest.Model tf.keras.layers.BatchNormalization(), tf.keras.layers.MaxPooling2D((3, 3), strides:(2, 2)), - tf.keras.layers.Conv2D(256, (5, 5), (1, 1), "same", activation: keras.activations.Relu, bias_regularizer:keras.regularizers.L1L2), - tf.keras.layers.BatchNormalization(), - - tf.keras.layers.Conv2D(256, (5, 5), (1, 1), "same", activation: keras.activations.Relu, bias_regularizer:keras.regularizers.L2), - tf.keras.layers.BatchNormalization(), - - tf.keras.layers.Conv2D(256, (5, 5), (1, 1), "same", activation: keras.activations.Relu, bias_regularizer:keras.regularizers.L1), + tf.keras.layers.Conv2D(256, (5, 5), (1, 1), "same", activation: "relu"), tf.keras.layers.BatchNormalization(), tf.keras.layers.MaxPooling2D((3, 3), (2, 2)),