Browse Source

Fix import_meta_graph exception if variables is empty.

tags/v0.13
Oceania2018 5 years ago
parent
commit
252543fbb8
4 changed files with 9 additions and 3 deletions
  1. +5
    -0
      docs/source/MnistInRnn.md
  2. +2
    -1
      src/TensorFlowNET.Core/Framework/meta_graph.cs
  3. +2
    -1
      src/TensorFlowNET.Core/TensorFlow.Binding.csproj
  4. +0
    -1
      src/TensorFlowNET.Core/Variables/variables.py.cs

+ 5
- 0
docs/source/MnistInRnn.md View File

@@ -0,0 +1,5 @@
# Chapter. MNIST In RNN

### Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are popular models that have shown great promise in sequential data classification task. The traditional neural network model cannot make the next prediction input based on the knowledge that has been learned before.

+ 2
- 1
src/TensorFlowNET.Core/Framework/meta_graph.cs View File

@@ -142,7 +142,8 @@ namespace Tensorflow

break;
default:
throw new NotImplementedException("import_scoped_meta_graph_with_return_elements");
Console.WriteLine($"Cannot identify data type for collection {col.Key}. Skipping.");
break;
}
}



+ 2
- 1
src/TensorFlowNET.Core/TensorFlow.Binding.csproj View File

@@ -25,7 +25,8 @@ https://tensorflownet.readthedocs.io</Description>
3: Add tf.nn.rnn_cell.BasicRNNCell and tf.nn.dynamic_rnn.
4: Add EstimatorSpec.
5: Add rnn.static_rnn.
6: Add array_grad._SplitGrad().</PackageReleaseNotes>
6: Add array_grad._SplitGrad().
7: Fix import_meta_graph exception if variables is empty.</PackageReleaseNotes>
<LangVersion>7.3</LangVersion>
<FileVersion>0.13.0.0</FileVersion>
<PackageLicenseFile>LICENSE</PackageLicenseFile>


+ 0
- 1
src/TensorFlowNET.Core/Variables/variables.py.cs View File

@@ -61,7 +61,6 @@ namespace Tensorflow
public static List<VariableV1> global_variables(string scope = null)
{
return ops.get_collection<VariableV1>(tf.GraphKeys.GLOBAL_VARIABLES, scope);

}

/// <summary>


Loading…
Cancel
Save