@@ -0,0 +1,5 @@ | |||||
# Chapter. MNIST In RNN | |||||
### Recurrent Neural Networks | |||||
Recurrent Neural Networks (RNNs) are popular models that have shown great promise in sequential data classification task. The traditional neural network model cannot make the next prediction input based on the knowledge that has been learned before. |
@@ -142,7 +142,8 @@ namespace Tensorflow | |||||
break; | break; | ||||
default: | default: | ||||
throw new NotImplementedException("import_scoped_meta_graph_with_return_elements"); | |||||
Console.WriteLine($"Cannot identify data type for collection {col.Key}. Skipping."); | |||||
break; | |||||
} | } | ||||
} | } | ||||
@@ -25,7 +25,8 @@ https://tensorflownet.readthedocs.io</Description> | |||||
3: Add tf.nn.rnn_cell.BasicRNNCell and tf.nn.dynamic_rnn. | 3: Add tf.nn.rnn_cell.BasicRNNCell and tf.nn.dynamic_rnn. | ||||
4: Add EstimatorSpec. | 4: Add EstimatorSpec. | ||||
5: Add rnn.static_rnn. | 5: Add rnn.static_rnn. | ||||
6: Add array_grad._SplitGrad().</PackageReleaseNotes> | |||||
6: Add array_grad._SplitGrad(). | |||||
7: Fix import_meta_graph exception if variables is empty.</PackageReleaseNotes> | |||||
<LangVersion>7.3</LangVersion> | <LangVersion>7.3</LangVersion> | ||||
<FileVersion>0.13.0.0</FileVersion> | <FileVersion>0.13.0.0</FileVersion> | ||||
<PackageLicenseFile>LICENSE</PackageLicenseFile> | <PackageLicenseFile>LICENSE</PackageLicenseFile> | ||||
@@ -61,7 +61,6 @@ namespace Tensorflow | |||||
public static List<VariableV1> global_variables(string scope = null) | public static List<VariableV1> global_variables(string scope = null) | ||||
{ | { | ||||
return ops.get_collection<VariableV1>(tf.GraphKeys.GLOBAL_VARIABLES, scope); | return ops.get_collection<VariableV1>(tf.GraphKeys.GLOBAL_VARIABLES, scope); | ||||
} | } | ||||
/// <summary> | /// <summary> | ||||