Add feature(not completed):add SimpleRNNCell, StackedRNNCell, RNN and test.tags/v0.110.0-LSTM-Model
@@ -12,9 +12,14 @@ namespace Tensorflow.Common.Types | |||
/// create a single-dim generalized Tensor shape. | |||
/// </summary> | |||
/// <param name="dim"></param> | |||
public GeneralizedTensorShape(int dim) | |||
public GeneralizedTensorShape(int dim, int size = 1) | |||
{ | |||
Shapes = new TensorShapeConfig[] { new TensorShapeConfig() { Items = new long?[] { dim } } }; | |||
var elem = new TensorShapeConfig() { Items = new long?[] { dim } }; | |||
Shapes = Enumerable.Repeat(elem, size).ToArray(); | |||
//Shapes = new TensorShapeConfig[size]; | |||
//Shapes.Initialize(new TensorShapeConfig() { Items = new long?[] { dim } }); | |||
//Array.Initialize(Shapes, new TensorShapeConfig() { Items = new long?[] { dim } }); | |||
////Shapes = new TensorShapeConfig[] { new TensorShapeConfig() { Items = new long?[] { dim } } }; | |||
} | |||
public GeneralizedTensorShape(Shape shape) | |||
@@ -113,6 +118,11 @@ namespace Tensorflow.Common.Types | |||
return new Nest<long?>(Shapes.Select(s => DealWithSingleShape(s))); | |||
} | |||
} | |||
public static implicit operator GeneralizedTensorShape(int dims) | |||
=> new GeneralizedTensorShape(dims); | |||
public IEnumerator<long?[]> GetEnumerator() | |||
{ | |||
@@ -10,6 +10,9 @@ namespace Tensorflow.Keras.ArgsDefinition.Rnn | |||
[JsonProperty("cell")] | |||
// TODO: the cell should be serialized with `serialize_keras_object`. | |||
public IRnnCell Cell { get; set; } = null; | |||
[JsonProperty("cells")] | |||
public IList<IRnnCell> Cells { get; set; } = null; | |||
[JsonProperty("return_sequences")] | |||
public bool ReturnSequences { get; set; } = false; | |||
[JsonProperty("return_state")] | |||
@@ -1,10 +1,11 @@ | |||
using System.Collections.Generic; | |||
using Tensorflow.Keras.Layers.Rnn; | |||
namespace Tensorflow.Keras.ArgsDefinition.Rnn | |||
{ | |||
public class StackedRNNCellsArgs : LayerArgs | |||
{ | |||
public IList<RnnCell> Cells { get; set; } | |||
public IList<IRnnCell> Cells { get; set; } | |||
public Dictionary<string, object> Kwargs { get; set; } = null; | |||
} | |||
} |
@@ -1,5 +1,6 @@ | |||
using System; | |||
using Tensorflow.Framework.Models; | |||
using Tensorflow.Keras.Layers.Rnn; | |||
using Tensorflow.NumPy; | |||
using static Google.Protobuf.Reflection.FieldDescriptorProto.Types; | |||
@@ -192,6 +193,19 @@ namespace Tensorflow.Keras.Layers | |||
float offset = 0, | |||
Shape input_shape = null); | |||
public IRnnCell SimpleRNNCell( | |||
int units, | |||
string activation = "tanh", | |||
bool use_bias = true, | |||
string kernel_initializer = "glorot_uniform", | |||
string recurrent_initializer = "orthogonal", | |||
string bias_initializer = "zeros", | |||
float dropout = 0f, | |||
float recurrent_dropout = 0f); | |||
public IRnnCell StackedRNNCells( | |||
IEnumerable<IRnnCell> cells); | |||
public ILayer SimpleRNN(int units, | |||
string activation = "tanh", | |||
string kernel_initializer = "glorot_uniform", | |||
@@ -200,6 +214,26 @@ namespace Tensorflow.Keras.Layers | |||
bool return_sequences = false, | |||
bool return_state = false); | |||
public ILayer RNN( | |||
IRnnCell cell, | |||
bool return_sequences = false, | |||
bool return_state = false, | |||
bool go_backwards = false, | |||
bool stateful = false, | |||
bool unroll = false, | |||
bool time_major = false | |||
); | |||
public ILayer RNN( | |||
IEnumerable<IRnnCell> cell, | |||
bool return_sequences = false, | |||
bool return_state = false, | |||
bool go_backwards = false, | |||
bool stateful = false, | |||
bool unroll = false, | |||
bool time_major = false | |||
); | |||
public ILayer Subtract(); | |||
} | |||
} |
@@ -109,7 +109,19 @@ namespace Tensorflow.Operations | |||
return ta; | |||
});*/ | |||
throw new NotImplementedException(""); | |||
//if (indices is EagerTensor) | |||
//{ | |||
// indices = indices as EagerTensor; | |||
// indices = indices.numpy(); | |||
//} | |||
//foreach (var (index, val) in zip(indices.ToArray<int>(), array_ops.unstack(value))) | |||
//{ | |||
// this.write(index, val); | |||
//} | |||
//return base; | |||
//throw new NotImplementedException(""); | |||
return this; | |||
} | |||
public void _merge_element_shape(Shape shape) | |||
@@ -17,6 +17,7 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.Linq; | |||
using Tensorflow.Eager; | |||
using static Tensorflow.Binding; | |||
namespace Tensorflow.Operations | |||
@@ -146,7 +147,9 @@ namespace Tensorflow.Operations | |||
return ta; | |||
});*/ | |||
throw new NotImplementedException(""); | |||
//throw new NotImplementedException(""); | |||
return this; | |||
} | |||
public void _merge_element_shape(Shape shape) | |||
@@ -510,7 +510,7 @@ namespace Tensorflow.Keras | |||
} | |||
} | |||
// tf.where needs its condition tensor to be the same shape as its two | |||
// result tensors, but in our case the condition (mask) tensor is | |||
// (nsamples, 1), and inputs are (nsamples, ndimensions) or even more. | |||
@@ -535,7 +535,7 @@ namespace Tensorflow.Keras | |||
{ | |||
mask_t = tf.expand_dims(mask_t, -1); | |||
} | |||
var multiples = Enumerable.Repeat(1, fixed_dim).ToArray().concat(input_t.shape.as_int_list().ToList().GetRange(fixed_dim, input_t.rank)); | |||
var multiples = Enumerable.Repeat(1, fixed_dim).ToArray().concat(input_t.shape.as_int_list().Skip(fixed_dim).ToArray()); | |||
return tf.tile(mask_t, multiples); | |||
} | |||
@@ -570,9 +570,6 @@ namespace Tensorflow.Keras | |||
// individually. The result of this will be a tuple of lists, each of | |||
// the item in tuple is list of the tensor with shape (batch, feature) | |||
Tensors _process_single_input_t(Tensor input_t) | |||
{ | |||
var unstaked_input_t = array_ops.unstack(input_t); // unstack for time_step dim | |||
@@ -609,7 +606,7 @@ namespace Tensorflow.Keras | |||
var mask_list = tf.unstack(mask); | |||
if (go_backwards) | |||
{ | |||
mask_list.Reverse(); | |||
mask_list.Reverse().ToArray(); | |||
} | |||
for (int i = 0; i < time_steps; i++) | |||
@@ -629,9 +626,10 @@ namespace Tensorflow.Keras | |||
} | |||
else | |||
{ | |||
prev_output = successive_outputs[successive_outputs.Length - 1]; | |||
prev_output = successive_outputs.Last(); | |||
} | |||
// output could be a tensor | |||
output = tf.where(tiled_mask_t, output, prev_output); | |||
var flat_states = Nest.Flatten(states).ToList(); | |||
@@ -661,13 +659,13 @@ namespace Tensorflow.Keras | |||
} | |||
} | |||
last_output = successive_outputs[successive_outputs.Length - 1]; | |||
new_states = successive_states[successive_states.Length - 1]; | |||
last_output = successive_outputs.Last(); | |||
new_states = successive_states.Last(); | |||
outputs = tf.stack(successive_outputs); | |||
if (zero_output_for_mask) | |||
{ | |||
last_output = tf.where(_expand_mask(mask_list[mask_list.Length - 1], last_output), last_output, tf.zeros_like(last_output)); | |||
last_output = tf.where(_expand_mask(mask_list.Last(), last_output), last_output, tf.zeros_like(last_output)); | |||
outputs = tf.where(_expand_mask(mask, outputs, fixed_dim: 2), outputs, tf.zeros_like(outputs)); | |||
} | |||
else // mask is null | |||
@@ -689,8 +687,8 @@ namespace Tensorflow.Keras | |||
successive_states = new Tensors { newStates }; | |||
} | |||
} | |||
last_output = successive_outputs[successive_outputs.Length - 1]; | |||
new_states = successive_states[successive_states.Length - 1]; | |||
last_output = successive_outputs.Last(); | |||
new_states = successive_states.Last(); | |||
outputs = tf.stack(successive_outputs); | |||
} | |||
} | |||
@@ -701,6 +699,8 @@ namespace Tensorflow.Keras | |||
// Create input tensor array, if the inputs is nested tensors, then it | |||
// will be flattened first, and tensor array will be created one per | |||
// flattened tensor. | |||
var input_ta = new List<TensorArray>(); | |||
for (int i = 0; i < flatted_inptus.Count; i++) | |||
{ | |||
@@ -719,6 +719,7 @@ namespace Tensorflow.Keras | |||
} | |||
} | |||
// Get the time(0) input and compute the output for that, the output will | |||
// be used to determine the dtype of output tensor array. Don't read from | |||
// input_ta due to TensorArray clear_after_read default to True. | |||
@@ -773,7 +774,7 @@ namespace Tensorflow.Keras | |||
return res; | |||
}; | |||
} | |||
// TODO(Wanglongzhi2001), what the input_length's type should be(an integer or a single tensor)? | |||
// TODO(Wanglongzhi2001), what the input_length's type should be(an integer or a single tensor), it could be an integer or tensor | |||
else if (input_length is Tensor) | |||
{ | |||
if (go_backwards) | |||
@@ -685,6 +685,34 @@ namespace Tensorflow.Keras.Layers | |||
Alpha = alpha | |||
}); | |||
public IRnnCell SimpleRNNCell( | |||
int units, | |||
string activation = "tanh", | |||
bool use_bias = true, | |||
string kernel_initializer = "glorot_uniform", | |||
string recurrent_initializer = "orthogonal", | |||
string bias_initializer = "zeros", | |||
float dropout = 0f, | |||
float recurrent_dropout = 0f) | |||
=> new SimpleRNNCell(new SimpleRNNCellArgs | |||
{ | |||
Units = units, | |||
Activation = keras.activations.GetActivationFromName(activation), | |||
UseBias = use_bias, | |||
KernelInitializer = GetInitializerByName(kernel_initializer), | |||
RecurrentInitializer = GetInitializerByName(recurrent_initializer), | |||
Dropout = dropout, | |||
RecurrentDropout = recurrent_dropout | |||
}); | |||
public IRnnCell StackedRNNCells( | |||
IEnumerable<IRnnCell> cells) | |||
=> new StackedRNNCells(new StackedRNNCellsArgs | |||
{ | |||
Cells = cells.ToList() | |||
}); | |||
/// <summary> | |||
/// | |||
/// </summary> | |||
@@ -709,6 +737,55 @@ namespace Tensorflow.Keras.Layers | |||
ReturnState = return_state | |||
}); | |||
/// <summary> | |||
/// | |||
/// </summary> | |||
/// <param name="cell"></param> | |||
/// <param name="return_sequences"></param> | |||
/// <param name="return_state"></param> | |||
/// <param name="go_backwards"></param> | |||
/// <param name="stateful"></param> | |||
/// <param name="unroll"></param> | |||
/// <param name="time_major"></param> | |||
/// <returns></returns> | |||
public ILayer RNN( | |||
IRnnCell cell, | |||
bool return_sequences = false, | |||
bool return_state = false, | |||
bool go_backwards = false, | |||
bool stateful = false, | |||
bool unroll = false, | |||
bool time_major = false) | |||
=> new RNN(new RNNArgs | |||
{ | |||
Cell = cell, | |||
ReturnSequences = return_sequences, | |||
ReturnState = return_state, | |||
GoBackwards = go_backwards, | |||
Stateful = stateful, | |||
Unroll = unroll, | |||
TimeMajor = time_major | |||
}); | |||
public ILayer RNN( | |||
IEnumerable<IRnnCell> cell, | |||
bool return_sequences = false, | |||
bool return_state = false, | |||
bool go_backwards = false, | |||
bool stateful = false, | |||
bool unroll = false, | |||
bool time_major = false) | |||
=> new RNN(new RNNArgs | |||
{ | |||
Cells = cell.ToList(), | |||
ReturnSequences = return_sequences, | |||
ReturnState = return_state, | |||
GoBackwards = go_backwards, | |||
Stateful = stateful, | |||
Unroll = unroll, | |||
TimeMajor = time_major | |||
}); | |||
/// <summary> | |||
/// Long Short-Term Memory layer - Hochreiter 1997. | |||
/// </summary> | |||
@@ -17,6 +17,21 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
} | |||
protected void _create_non_trackable_mask_cache() | |||
{ | |||
} | |||
public void reset_dropout_mask() | |||
{ | |||
} | |||
public void reset_recurrent_dropout_mask() | |||
{ | |||
} | |||
public Tensors? get_dropout_maskcell_for_cell(Tensors input, bool training, int count = 1) | |||
{ | |||
if (dropout == 0f) | |||
@@ -38,7 +38,17 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
SupportsMasking = true; | |||
// if is StackedRnncell | |||
_cell = args.Cell; | |||
if (args.Cells != null) | |||
{ | |||
_cell = new StackedRNNCells(new StackedRNNCellsArgs | |||
{ | |||
Cells = args.Cells | |||
}); | |||
} | |||
else | |||
{ | |||
_cell = args.Cell; | |||
} | |||
// get input_shape | |||
_args = PreConstruct(args); | |||
@@ -122,6 +132,8 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
var state_shape = new int[] { (int)batch }.concat(flat_state.as_int_list()); | |||
return new Shape(state_shape); | |||
}; | |||
var state_shape = _get_state_shape(state_size); | |||
return new List<Shape> { output_shape, state_shape }; | |||
@@ -240,7 +252,7 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
if (_cell is StackedRNNCells) | |||
{ | |||
var stack_cell = _cell as StackedRNNCells; | |||
foreach (var cell in stack_cell.Cells) | |||
foreach (IRnnCell cell in stack_cell.Cells) | |||
{ | |||
_maybe_reset_cell_dropout_mask(cell); | |||
} | |||
@@ -253,7 +265,7 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
} | |||
Shape input_shape; | |||
if (!inputs.IsSingle()) | |||
if (!inputs.IsNested()) | |||
{ | |||
// In the case of nested input, use the first element for shape check | |||
// input_shape = nest.flatten(inputs)[0].shape; | |||
@@ -267,7 +279,7 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
var timesteps = _args.TimeMajor ? input_shape[0] : input_shape[1]; | |||
if (_args.Unroll && timesteps != null) | |||
if (_args.Unroll && timesteps == null) | |||
{ | |||
throw new ValueError( | |||
"Cannot unroll a RNN if the " + | |||
@@ -302,7 +314,6 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
states = new Tensors(states.SkipLast(_num_constants)); | |||
states = len(states) == 1 && is_tf_rnn_cell ? new Tensors(states[0]) : states; | |||
var (output, new_states) = _cell.Apply(inputs, states, optional_args: new RnnOptionalArgs() { Constants = constants }); | |||
// TODO(Wanglongzhi2001),should cell_call_fn's return value be Tensors, Tensors? | |||
return (output, new_states.Single); | |||
}; | |||
} | |||
@@ -310,13 +321,14 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
{ | |||
step = (inputs, states) => | |||
{ | |||
states = len(states) == 1 && is_tf_rnn_cell ? new Tensors(states[0]) : states; | |||
states = len(states) == 1 && is_tf_rnn_cell ? new Tensors(states.First()) : states; | |||
var (output, new_states) = _cell.Apply(inputs, states); | |||
return (output, new_states.Single); | |||
return (output, new_states); | |||
}; | |||
} | |||
var (last_output, outputs, states) = keras.backend.rnn(step, | |||
var (last_output, outputs, states) = keras.backend.rnn( | |||
step, | |||
inputs, | |||
initial_state, | |||
constants: constants, | |||
@@ -394,6 +406,7 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
initial_state = null; | |||
inputs = inputs[0]; | |||
} | |||
if (_args.Stateful) | |||
{ | |||
@@ -402,7 +415,7 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
var tmp = new Tensor[] { }; | |||
foreach (var s in nest.flatten(States)) | |||
{ | |||
tmp.add(tf.math.count_nonzero((Tensor)s)); | |||
tmp.add(tf.math.count_nonzero(s.Single())); | |||
} | |||
var non_zero_count = tf.add_n(tmp); | |||
//initial_state = tf.cond(non_zero_count > 0, () => States, () => initial_state); | |||
@@ -415,6 +428,15 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
{ | |||
initial_state = States; | |||
} | |||
// TODO(Wanglongzhi2001), | |||
// initial_state = tf.nest.map_structure( | |||
//# When the layer has a inferred dtype, use the dtype from the | |||
//# cell. | |||
// lambda v: tf.cast( | |||
// v, self.compute_dtype or self.cell.compute_dtype | |||
// ), | |||
// initial_state, | |||
// ) | |||
} | |||
else if (initial_state is null) | |||
@@ -424,10 +446,9 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
if (initial_state.Length != States.Length) | |||
{ | |||
throw new ValueError( | |||
$"Layer {this} expects {States.Length} state(s), " + | |||
$"but it received {initial_state.Length} " + | |||
$"initial state(s). Input received: {inputs}"); | |||
throw new ValueError($"Layer {this} expects {States.Length} state(s), " + | |||
$"but it received {initial_state.Length} " + | |||
$"initial state(s). Input received: {inputs}"); | |||
} | |||
return (inputs, initial_state, constants); | |||
@@ -458,11 +479,11 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
void _maybe_reset_cell_dropout_mask(ILayer cell) | |||
{ | |||
//if (cell is DropoutRNNCellMixin) | |||
//{ | |||
// cell.reset_dropout_mask(); | |||
// cell.reset_recurrent_dropout_mask(); | |||
//} | |||
if (cell is DropoutRNNCellMixin CellDRCMixin) | |||
{ | |||
CellDRCMixin.reset_dropout_mask(); | |||
CellDRCMixin.reset_recurrent_dropout_mask(); | |||
} | |||
} | |||
private static RNNArgs PreConstruct(RNNArgs args) | |||
@@ -537,15 +558,24 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
protected Tensors get_initial_state(Tensors inputs) | |||
{ | |||
var get_initial_state_fn = _cell.GetType().GetMethod("get_initial_state"); | |||
var input = inputs[0]; | |||
var input_shape = input.shape; | |||
var input_shape = inputs.shape; | |||
var batch_size = _args.TimeMajor ? input_shape[1] : input_shape[0]; | |||
var dtype = input.dtype; | |||
Tensors init_state; | |||
if (_cell is RnnCellBase rnn_base_cell) | |||
Tensors init_state = new Tensors(); | |||
if(get_initial_state_fn != null) | |||
{ | |||
init_state = rnn_base_cell.GetInitialState(null, batch_size, dtype); | |||
init_state = (Tensors)get_initial_state_fn.Invoke(_cell, new object[] { inputs, batch_size, dtype }); | |||
} | |||
//if (_cell is RnnCellBase rnn_base_cell) | |||
//{ | |||
// init_state = rnn_base_cell.GetInitialState(null, batch_size, dtype); | |||
//} | |||
else | |||
{ | |||
init_state = RnnUtils.generate_zero_filled_state(batch_size, _cell.StateSize, dtype); | |||
@@ -6,6 +6,7 @@ using Tensorflow.Keras.Engine; | |||
using Tensorflow.Keras.Saving; | |||
using Tensorflow.Common.Types; | |||
using Tensorflow.Common.Extensions; | |||
using Tensorflow.Keras.Utils; | |||
namespace Tensorflow.Keras.Layers.Rnn | |||
{ | |||
@@ -77,8 +78,10 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
var rec_dp_mask = get_recurrent_dropout_maskcell_for_cell(prev_output, training.Value); | |||
Tensor h; | |||
var ranks = inputs.rank; | |||
if (dp_mask != null) | |||
{ | |||
h = math_ops.matmul(math_ops.multiply(inputs.Single, dp_mask.Single), _kernel.AsTensor()); | |||
} | |||
else | |||
@@ -95,7 +98,7 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
{ | |||
prev_output = math_ops.multiply(prev_output, rec_dp_mask); | |||
} | |||
var tmp = _recurrent_kernel.AsTensor(); | |||
Tensor output = h + math_ops.matmul(prev_output, _recurrent_kernel.AsTensor()); | |||
if (_args.Activation != null) | |||
@@ -113,5 +116,10 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
return new Tensors(output, output); | |||
} | |||
} | |||
public Tensors get_initial_state(Tensors inputs = null, long? batch_size = null, TF_DataType? dtype = null) | |||
{ | |||
return RnnUtils.generate_zero_filled_state_for_cell(this, inputs, batch_size.Value, dtype.Value); | |||
} | |||
} | |||
} |
@@ -1,17 +1,20 @@ | |||
using System; | |||
using System.Collections.Generic; | |||
using System.ComponentModel; | |||
using System.Linq; | |||
using Tensorflow.Common.Extensions; | |||
using Tensorflow.Common.Types; | |||
using Tensorflow.Keras.ArgsDefinition; | |||
using Tensorflow.Keras.ArgsDefinition.Rnn; | |||
using Tensorflow.Keras.Engine; | |||
using Tensorflow.Keras.Saving; | |||
using Tensorflow.Keras.Utils; | |||
namespace Tensorflow.Keras.Layers.Rnn | |||
{ | |||
public class StackedRNNCells : Layer, IRnnCell | |||
{ | |||
public IList<RnnCell> Cells { get; set; } | |||
public IList<IRnnCell> Cells { get; set; } | |||
public bool reverse_state_order; | |||
public StackedRNNCells(StackedRNNCellsArgs args) : base(args) | |||
@@ -20,8 +23,19 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
{ | |||
args.Kwargs = new Dictionary<string, object>(); | |||
} | |||
foreach (var cell in args.Cells) | |||
{ | |||
//Type type = cell.GetType(); | |||
//var CallMethodInfo = type.GetMethod("Call"); | |||
//if (CallMethodInfo == null) | |||
//{ | |||
// throw new ValueError( | |||
// "All cells must have a `Call` method. " + | |||
// $"Received cell without a `Call` method: {cell}"); | |||
//} | |||
} | |||
Cells = args.Cells; | |||
reverse_state_order = (bool)args.Kwargs.Get("reverse_state_order", false); | |||
if (reverse_state_order) | |||
@@ -33,91 +47,112 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
} | |||
} | |||
public object state_size | |||
public GeneralizedTensorShape StateSize | |||
{ | |||
get => throw new NotImplementedException(); | |||
//@property | |||
//def state_size(self) : | |||
// return tuple(c.state_size for c in | |||
// (self.cells[::- 1] if self.reverse_state_order else self.cells)) | |||
get | |||
{ | |||
GeneralizedTensorShape state_size = new GeneralizedTensorShape(1, Cells.Count); | |||
if (reverse_state_order && Cells.Count > 0) | |||
{ | |||
var idxAndCell = Cells.Reverse().Select((cell, idx) => (idx, cell)); | |||
foreach (var cell in idxAndCell) | |||
{ | |||
state_size.Shapes[cell.idx] = cell.cell.StateSize.Shapes.First(); | |||
} | |||
} | |||
else | |||
{ | |||
//foreach (var cell in Cells) | |||
//{ | |||
// state_size.Shapes.add(cell.StateSize.Shapes.First()); | |||
//} | |||
var idxAndCell = Cells.Select((cell, idx) => (idx, cell)); | |||
foreach (var cell in idxAndCell) | |||
{ | |||
state_size.Shapes[cell.idx] = cell.cell.StateSize.Shapes.First(); | |||
} | |||
} | |||
return state_size; | |||
} | |||
} | |||
public object output_size | |||
{ | |||
get | |||
{ | |||
var lastCell = Cells[Cells.Count - 1]; | |||
if (lastCell.output_size != -1) | |||
var lastCell = Cells.LastOrDefault(); | |||
if (lastCell.OutputSize.ToSingleShape() != -1) | |||
{ | |||
return lastCell.output_size; | |||
return lastCell.OutputSize; | |||
} | |||
else if (RNN.is_multiple_state(lastCell.StateSize)) | |||
{ | |||
// return ((dynamic)Cells[-1].state_size)[0]; | |||
throw new NotImplementedException(""); | |||
return lastCell.StateSize.First(); | |||
//throw new NotImplementedException(""); | |||
} | |||
else | |||
{ | |||
return Cells[-1].state_size; | |||
return lastCell.StateSize; | |||
} | |||
} | |||
} | |||
public object get_initial_state() | |||
public Tensors get_initial_state(Tensors inputs = null, long? batch_size = null, TF_DataType? dtype = null) | |||
{ | |||
throw new NotImplementedException(); | |||
// def get_initial_state(self, inputs= None, batch_size= None, dtype= None) : | |||
// initial_states = [] | |||
// for cell in self.cells[::- 1] if self.reverse_state_order else self.cells: | |||
// get_initial_state_fn = getattr(cell, 'get_initial_state', None) | |||
// if get_initial_state_fn: | |||
// initial_states.append(get_initial_state_fn( | |||
// inputs=inputs, batch_size=batch_size, dtype=dtype)) | |||
// else: | |||
// initial_states.append(_generate_zero_filled_state_for_cell( | |||
// cell, inputs, batch_size, dtype)) | |||
// return tuple(initial_states) | |||
var cells = reverse_state_order ? Cells.Reverse() : Cells; | |||
Tensors initial_states = new Tensors(); | |||
foreach (var cell in cells) | |||
{ | |||
var get_initial_state_fn = cell.GetType().GetMethod("get_initial_state"); | |||
if (get_initial_state_fn != null) | |||
{ | |||
var result = (Tensors)get_initial_state_fn.Invoke(cell, new object[] { inputs, batch_size, dtype }); | |||
initial_states.Add(result); | |||
} | |||
else | |||
{ | |||
initial_states.Add(RnnUtils.generate_zero_filled_state_for_cell(cell, inputs, batch_size.Value, dtype.Value)); | |||
} | |||
} | |||
return initial_states; | |||
} | |||
public object call() | |||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||
{ | |||
throw new NotImplementedException(); | |||
// def call(self, inputs, states, constants= None, training= None, ** kwargs): | |||
// # Recover per-cell states. | |||
// state_size = (self.state_size[::- 1] | |||
// if self.reverse_state_order else self.state_size) | |||
// nested_states = nest.pack_sequence_as(state_size, nest.flatten(states)) | |||
// # Call the cells in order and store the returned states. | |||
// new_nested_states = [] | |||
// for cell, states in zip(self.cells, nested_states) : | |||
// states = states if nest.is_nested(states) else [states] | |||
//# TF cell does not wrap the state into list when there is only one state. | |||
// is_tf_rnn_cell = getattr(cell, '_is_tf_rnn_cell', None) is not None | |||
// states = states[0] if len(states) == 1 and is_tf_rnn_cell else states | |||
// if generic_utils.has_arg(cell.call, 'training'): | |||
// kwargs['training'] = training | |||
// else: | |||
// kwargs.pop('training', None) | |||
// # Use the __call__ function for callable objects, eg layers, so that it | |||
// # will have the proper name scopes for the ops, etc. | |||
// cell_call_fn = cell.__call__ if callable(cell) else cell.call | |||
// if generic_utils.has_arg(cell.call, 'constants'): | |||
// inputs, states = cell_call_fn(inputs, states, | |||
// constants= constants, ** kwargs) | |||
// else: | |||
// inputs, states = cell_call_fn(inputs, states, ** kwargs) | |||
// new_nested_states.append(states) | |||
// Recover per-cell states. | |||
var state_size = reverse_state_order ? StateSize.Reverse() : StateSize; | |||
var nested_states = reverse_state_order ? state.Flatten().Reverse() : state.Flatten(); | |||
// return inputs, nest.pack_sequence_as(state_size, | |||
// nest.flatten(new_nested_states)) | |||
var new_nest_states = new Tensors(); | |||
// Call the cells in order and store the returned states. | |||
foreach (var (cell, states) in zip(Cells, nested_states)) | |||
{ | |||
// states = states if tf.nest.is_nested(states) else [states] | |||
var type = cell.GetType(); | |||
bool IsTFRnnCell = type.GetProperty("IsTFRnnCell") != null; | |||
state = len(state) == 1 && IsTFRnnCell ? state.FirstOrDefault() : state; | |||
RnnOptionalArgs? rnn_optional_args = optional_args as RnnOptionalArgs; | |||
Tensors? constants = rnn_optional_args?.Constants; | |||
Tensors new_states; | |||
(inputs, new_states) = cell.Apply(inputs, states, optional_args: new RnnOptionalArgs() { Constants = constants }); | |||
new_nest_states.Add(new_states); | |||
} | |||
new_nest_states = reverse_state_order ? new_nest_states.Reverse().ToArray() : new_nest_states.ToArray(); | |||
return new Nest<Tensor>(new List<Nest<Tensor>> { | |||
new Nest<Tensor>(new List<Nest<Tensor>> { new Nest<Tensor>(inputs.Single()) }), new Nest<Tensor>(new_nest_states) }) | |||
.ToTensors(); | |||
} | |||
public void build() | |||
{ | |||
throw new NotImplementedException(); | |||
built = true; | |||
// @tf_utils.shape_type_conversion | |||
// def build(self, input_shape) : | |||
// if isinstance(input_shape, list) : | |||
@@ -168,9 +203,9 @@ namespace Tensorflow.Keras.Layers.Rnn | |||
{ | |||
throw new NotImplementedException(); | |||
} | |||
public GeneralizedTensorShape StateSize => throw new NotImplementedException(); | |||
public GeneralizedTensorShape OutputSize => throw new NotImplementedException(); | |||
public bool IsTFRnnCell => throw new NotImplementedException(); | |||
public bool IsTFRnnCell => true; | |||
public bool SupportOptionalArgs => throw new NotImplementedException(); | |||
} | |||
} |
@@ -2,6 +2,7 @@ using Microsoft.VisualStudio.TestTools.UnitTesting; | |||
using System.Collections.Generic; | |||
using Tensorflow.Keras.Callbacks; | |||
using Tensorflow.Keras.Engine; | |||
using Tensorflow.NumPy; | |||
using static Tensorflow.KerasApi; | |||
@@ -18,7 +19,7 @@ namespace Tensorflow.Keras.UnitTest.Callbacks | |||
var layers = keras.layers; | |||
var model = keras.Sequential(new List<ILayer> | |||
{ | |||
layers.Rescaling(1.0f / 255, input_shape: (32, 32, 3)), | |||
layers.Rescaling(1.0f / 255, input_shape: (28, 28, 1)), | |||
layers.Conv2D(32, 3, padding: "same", activation: keras.activations.Relu), | |||
layers.MaxPooling2D(), | |||
layers.Flatten(), | |||
@@ -36,8 +37,20 @@ namespace Tensorflow.Keras.UnitTest.Callbacks | |||
var num_epochs = 3; | |||
var batch_size = 8; | |||
var ((x_train, y_train), (x_test, y_test)) = keras.datasets.cifar10.load_data(); | |||
x_train = x_train / 255.0f; | |||
var data_loader = new MnistModelLoader(); | |||
var dataset = data_loader.LoadAsync(new ModelLoadSetting | |||
{ | |||
TrainDir = "mnist", | |||
OneHot = false, | |||
ValidationSize = 59900, | |||
}).Result; | |||
NDArray x1 = np.reshape(dataset.Train.Data, (dataset.Train.Data.shape[0], 28, 28, 1)); | |||
NDArray x2 = x1; | |||
var x = new NDArray[] { x1, x2 }; | |||
// define a CallbackParams first, the parameters you pass al least contain Model and Epochs. | |||
CallbackParams callback_parameters = new CallbackParams | |||
{ | |||
@@ -47,10 +60,8 @@ namespace Tensorflow.Keras.UnitTest.Callbacks | |||
// define your earlystop | |||
ICallback earlystop = new EarlyStopping(callback_parameters, "accuracy"); | |||
// define a callbcaklist, then add the earlystopping to it. | |||
var callbacks = new List<ICallback>(); | |||
callbacks.add(earlystop); | |||
model.fit(x_train[new Slice(0, 2000)], y_train[new Slice(0, 2000)], batch_size, num_epochs, callbacks: callbacks); | |||
var callbacks = new List<ICallback>{ earlystop}; | |||
model.fit(x, dataset.Train.Labels, batch_size, num_epochs, callbacks: callbacks); | |||
} | |||
} | |||
@@ -4,25 +4,111 @@ using System.Collections.Generic; | |||
using System.Linq; | |||
using System.Text; | |||
using System.Threading.Tasks; | |||
using Tensorflow.Common.Types; | |||
using Tensorflow.Keras.Engine; | |||
using Tensorflow.Keras.Layers.Rnn; | |||
using Tensorflow.Keras.Saving; | |||
using Tensorflow.NumPy; | |||
using Tensorflow.Train; | |||
using static Tensorflow.Binding; | |||
using static Tensorflow.KerasApi; | |||
namespace Tensorflow.Keras.UnitTest.Layers | |||
{ | |||
[TestClass] | |||
public class Rnn | |||
{ | |||
[TestMethod] | |||
public void SimpleRNNCell() | |||
{ | |||
//var cell = tf.keras.layers.SimpleRNNCell(64, dropout: 0.5f, recurrent_dropout: 0.5f); | |||
//var h0 = new Tensors { tf.zeros(new Shape(4, 64)) }; | |||
//var x = tf.random.normal((4, 100)); | |||
//var (y, h1) = cell.Apply(inputs: x, states: h0); | |||
//var h2 = h1; | |||
//Assert.AreEqual((4, 64), y.shape); | |||
//Assert.AreEqual((4, 64), h2[0].shape); | |||
//var model = keras.Sequential(new List<ILayer> | |||
//{ | |||
// keras.layers.InputLayer(input_shape: (4,100)), | |||
// keras.layers.SimpleRNNCell(64) | |||
//}); | |||
//model.summary(); | |||
var cell = tf.keras.layers.SimpleRNNCell(64, dropout: 0.5f, recurrent_dropout: 0.5f); | |||
var h0 = new Tensors { tf.zeros(new Shape(4, 64)) }; | |||
var x = tf.random.normal((4, 100)); | |||
var (y, h1) = cell.Apply(inputs: x, states: h0); | |||
var h2 = h1; | |||
Assert.AreEqual((4, 64), y.shape); | |||
Assert.AreEqual((4, 64), h2[0].shape); | |||
} | |||
[TestMethod] | |||
public void StackedRNNCell() | |||
{ | |||
var inputs = tf.ones((32, 10)); | |||
var states = new Tensors { tf.zeros((32, 4)), tf.zeros((32, 5)) }; | |||
var cells = new IRnnCell[] { tf.keras.layers.SimpleRNNCell(4), tf.keras.layers.SimpleRNNCell(5) }; | |||
var stackedRNNCell = tf.keras.layers.StackedRNNCells(cells); | |||
var (output, state) = stackedRNNCell.Apply(inputs, states); | |||
Console.WriteLine(output); | |||
Console.WriteLine(state.shape); | |||
Assert.AreEqual((32, 5), output.shape); | |||
Assert.AreEqual((32, 4), state[0].shape); | |||
} | |||
[TestMethod] | |||
public void SimpleRNN() | |||
{ | |||
var inputs = np.arange(6 * 10 * 8).reshape((6, 10, 8)).astype(np.float32); | |||
/*var simple_rnn = keras.layers.SimpleRNN(4); | |||
var output = simple_rnn.Apply(inputs); | |||
Assert.AreEqual((32, 4), output.shape);*/ | |||
var simple_rnn = tf.keras.layers.SimpleRNN(4, return_sequences: true, return_state: true); | |||
var (whole_sequence_output, final_state) = simple_rnn.Apply(inputs); | |||
Console.WriteLine(whole_sequence_output); | |||
Console.WriteLine(final_state); | |||
//var inputs = np.arange(6 * 10 * 8).reshape((6, 10, 8)).astype(np.float32); | |||
///*var simple_rnn = keras.layers.SimpleRNN(4); | |||
//var output = simple_rnn.Apply(inputs); | |||
//Assert.AreEqual((32, 4), output.shape);*/ | |||
//var simple_rnn = tf.keras.layers.SimpleRNN(4, return_sequences: true, return_state: true); | |||
//var (whole_sequence_output, final_state) = simple_rnn.Apply(inputs); | |||
//Assert.AreEqual((6, 10, 4), whole_sequence_output.shape); | |||
//Assert.AreEqual((6, 4), final_state.shape); | |||
var inputs = keras.Input(shape: (10, 8)); | |||
var x = keras.layers.SimpleRNN(4).Apply(inputs); | |||
var output = keras.layers.Dense(10).Apply(x); | |||
var model = keras.Model(inputs, output); | |||
model.summary(); | |||
} | |||
[TestMethod] | |||
public void RNNForSimpleRNNCell() | |||
{ | |||
var inputs = tf.random.normal((32, 10, 8)); | |||
var cell = tf.keras.layers.SimpleRNNCell(10, dropout: 0.5f, recurrent_dropout: 0.5f); | |||
var rnn = tf.keras.layers.RNN(cell: cell); | |||
var output = rnn.Apply(inputs); | |||
Assert.AreEqual((32, 10), output.shape); | |||
} | |||
[TestMethod] | |||
public void RNNForStackedRNNCell() | |||
{ | |||
var inputs = tf.random.normal((32, 10, 8)); | |||
var cells = new IRnnCell[] { tf.keras.layers.SimpleRNNCell(4), tf.keras.layers.SimpleRNNCell(5) }; | |||
var stackedRNNCell = tf.keras.layers.StackedRNNCells(cells); | |||
var rnn = tf.keras.layers.RNN(cell: stackedRNNCell); | |||
var output = rnn.Apply(inputs); | |||
Assert.AreEqual((32, 5), output.shape); | |||
} | |||
[TestMethod] | |||
public void WlzTest() | |||
{ | |||
long[] b = { 1, 2, 3 }; | |||
Shape a = new Shape(Unknown).concatenate(b); | |||
Console.WriteLine(a); | |||
} | |||
} | |||
} |