Add feature(not completed):add SimpleRNNCell, StackedRNNCell, RNN and test.tags/v0.110.0-LSTM-Model
@@ -12,9 +12,14 @@ namespace Tensorflow.Common.Types | |||||
/// create a single-dim generalized Tensor shape. | /// create a single-dim generalized Tensor shape. | ||||
/// </summary> | /// </summary> | ||||
/// <param name="dim"></param> | /// <param name="dim"></param> | ||||
public GeneralizedTensorShape(int dim) | |||||
public GeneralizedTensorShape(int dim, int size = 1) | |||||
{ | { | ||||
Shapes = new TensorShapeConfig[] { new TensorShapeConfig() { Items = new long?[] { dim } } }; | |||||
var elem = new TensorShapeConfig() { Items = new long?[] { dim } }; | |||||
Shapes = Enumerable.Repeat(elem, size).ToArray(); | |||||
//Shapes = new TensorShapeConfig[size]; | |||||
//Shapes.Initialize(new TensorShapeConfig() { Items = new long?[] { dim } }); | |||||
//Array.Initialize(Shapes, new TensorShapeConfig() { Items = new long?[] { dim } }); | |||||
////Shapes = new TensorShapeConfig[] { new TensorShapeConfig() { Items = new long?[] { dim } } }; | |||||
} | } | ||||
public GeneralizedTensorShape(Shape shape) | public GeneralizedTensorShape(Shape shape) | ||||
@@ -113,6 +118,11 @@ namespace Tensorflow.Common.Types | |||||
return new Nest<long?>(Shapes.Select(s => DealWithSingleShape(s))); | return new Nest<long?>(Shapes.Select(s => DealWithSingleShape(s))); | ||||
} | } | ||||
} | } | ||||
public static implicit operator GeneralizedTensorShape(int dims) | |||||
=> new GeneralizedTensorShape(dims); | |||||
public IEnumerator<long?[]> GetEnumerator() | public IEnumerator<long?[]> GetEnumerator() | ||||
{ | { | ||||
@@ -10,6 +10,9 @@ namespace Tensorflow.Keras.ArgsDefinition.Rnn | |||||
[JsonProperty("cell")] | [JsonProperty("cell")] | ||||
// TODO: the cell should be serialized with `serialize_keras_object`. | // TODO: the cell should be serialized with `serialize_keras_object`. | ||||
public IRnnCell Cell { get; set; } = null; | public IRnnCell Cell { get; set; } = null; | ||||
[JsonProperty("cells")] | |||||
public IList<IRnnCell> Cells { get; set; } = null; | |||||
[JsonProperty("return_sequences")] | [JsonProperty("return_sequences")] | ||||
public bool ReturnSequences { get; set; } = false; | public bool ReturnSequences { get; set; } = false; | ||||
[JsonProperty("return_state")] | [JsonProperty("return_state")] | ||||
@@ -1,10 +1,11 @@ | |||||
using System.Collections.Generic; | using System.Collections.Generic; | ||||
using Tensorflow.Keras.Layers.Rnn; | |||||
namespace Tensorflow.Keras.ArgsDefinition.Rnn | namespace Tensorflow.Keras.ArgsDefinition.Rnn | ||||
{ | { | ||||
public class StackedRNNCellsArgs : LayerArgs | public class StackedRNNCellsArgs : LayerArgs | ||||
{ | { | ||||
public IList<RnnCell> Cells { get; set; } | |||||
public IList<IRnnCell> Cells { get; set; } | |||||
public Dictionary<string, object> Kwargs { get; set; } = null; | public Dictionary<string, object> Kwargs { get; set; } = null; | ||||
} | } | ||||
} | } |
@@ -1,5 +1,6 @@ | |||||
using System; | using System; | ||||
using Tensorflow.Framework.Models; | using Tensorflow.Framework.Models; | ||||
using Tensorflow.Keras.Layers.Rnn; | |||||
using Tensorflow.NumPy; | using Tensorflow.NumPy; | ||||
using static Google.Protobuf.Reflection.FieldDescriptorProto.Types; | using static Google.Protobuf.Reflection.FieldDescriptorProto.Types; | ||||
@@ -192,6 +193,19 @@ namespace Tensorflow.Keras.Layers | |||||
float offset = 0, | float offset = 0, | ||||
Shape input_shape = null); | Shape input_shape = null); | ||||
public IRnnCell SimpleRNNCell( | |||||
int units, | |||||
string activation = "tanh", | |||||
bool use_bias = true, | |||||
string kernel_initializer = "glorot_uniform", | |||||
string recurrent_initializer = "orthogonal", | |||||
string bias_initializer = "zeros", | |||||
float dropout = 0f, | |||||
float recurrent_dropout = 0f); | |||||
public IRnnCell StackedRNNCells( | |||||
IEnumerable<IRnnCell> cells); | |||||
public ILayer SimpleRNN(int units, | public ILayer SimpleRNN(int units, | ||||
string activation = "tanh", | string activation = "tanh", | ||||
string kernel_initializer = "glorot_uniform", | string kernel_initializer = "glorot_uniform", | ||||
@@ -200,6 +214,26 @@ namespace Tensorflow.Keras.Layers | |||||
bool return_sequences = false, | bool return_sequences = false, | ||||
bool return_state = false); | bool return_state = false); | ||||
public ILayer RNN( | |||||
IRnnCell cell, | |||||
bool return_sequences = false, | |||||
bool return_state = false, | |||||
bool go_backwards = false, | |||||
bool stateful = false, | |||||
bool unroll = false, | |||||
bool time_major = false | |||||
); | |||||
public ILayer RNN( | |||||
IEnumerable<IRnnCell> cell, | |||||
bool return_sequences = false, | |||||
bool return_state = false, | |||||
bool go_backwards = false, | |||||
bool stateful = false, | |||||
bool unroll = false, | |||||
bool time_major = false | |||||
); | |||||
public ILayer Subtract(); | public ILayer Subtract(); | ||||
} | } | ||||
} | } |
@@ -109,7 +109,19 @@ namespace Tensorflow.Operations | |||||
return ta; | return ta; | ||||
});*/ | });*/ | ||||
throw new NotImplementedException(""); | |||||
//if (indices is EagerTensor) | |||||
//{ | |||||
// indices = indices as EagerTensor; | |||||
// indices = indices.numpy(); | |||||
//} | |||||
//foreach (var (index, val) in zip(indices.ToArray<int>(), array_ops.unstack(value))) | |||||
//{ | |||||
// this.write(index, val); | |||||
//} | |||||
//return base; | |||||
//throw new NotImplementedException(""); | |||||
return this; | |||||
} | } | ||||
public void _merge_element_shape(Shape shape) | public void _merge_element_shape(Shape shape) | ||||
@@ -17,6 +17,7 @@ | |||||
using System; | using System; | ||||
using System.Collections.Generic; | using System.Collections.Generic; | ||||
using System.Linq; | using System.Linq; | ||||
using Tensorflow.Eager; | |||||
using static Tensorflow.Binding; | using static Tensorflow.Binding; | ||||
namespace Tensorflow.Operations | namespace Tensorflow.Operations | ||||
@@ -146,7 +147,9 @@ namespace Tensorflow.Operations | |||||
return ta; | return ta; | ||||
});*/ | });*/ | ||||
throw new NotImplementedException(""); | |||||
//throw new NotImplementedException(""); | |||||
return this; | |||||
} | } | ||||
public void _merge_element_shape(Shape shape) | public void _merge_element_shape(Shape shape) | ||||
@@ -510,7 +510,7 @@ namespace Tensorflow.Keras | |||||
} | } | ||||
} | } | ||||
// tf.where needs its condition tensor to be the same shape as its two | // tf.where needs its condition tensor to be the same shape as its two | ||||
// result tensors, but in our case the condition (mask) tensor is | // result tensors, but in our case the condition (mask) tensor is | ||||
// (nsamples, 1), and inputs are (nsamples, ndimensions) or even more. | // (nsamples, 1), and inputs are (nsamples, ndimensions) or even more. | ||||
@@ -535,7 +535,7 @@ namespace Tensorflow.Keras | |||||
{ | { | ||||
mask_t = tf.expand_dims(mask_t, -1); | mask_t = tf.expand_dims(mask_t, -1); | ||||
} | } | ||||
var multiples = Enumerable.Repeat(1, fixed_dim).ToArray().concat(input_t.shape.as_int_list().ToList().GetRange(fixed_dim, input_t.rank)); | |||||
var multiples = Enumerable.Repeat(1, fixed_dim).ToArray().concat(input_t.shape.as_int_list().Skip(fixed_dim).ToArray()); | |||||
return tf.tile(mask_t, multiples); | return tf.tile(mask_t, multiples); | ||||
} | } | ||||
@@ -570,9 +570,6 @@ namespace Tensorflow.Keras | |||||
// individually. The result of this will be a tuple of lists, each of | // individually. The result of this will be a tuple of lists, each of | ||||
// the item in tuple is list of the tensor with shape (batch, feature) | // the item in tuple is list of the tensor with shape (batch, feature) | ||||
Tensors _process_single_input_t(Tensor input_t) | Tensors _process_single_input_t(Tensor input_t) | ||||
{ | { | ||||
var unstaked_input_t = array_ops.unstack(input_t); // unstack for time_step dim | var unstaked_input_t = array_ops.unstack(input_t); // unstack for time_step dim | ||||
@@ -609,7 +606,7 @@ namespace Tensorflow.Keras | |||||
var mask_list = tf.unstack(mask); | var mask_list = tf.unstack(mask); | ||||
if (go_backwards) | if (go_backwards) | ||||
{ | { | ||||
mask_list.Reverse(); | |||||
mask_list.Reverse().ToArray(); | |||||
} | } | ||||
for (int i = 0; i < time_steps; i++) | for (int i = 0; i < time_steps; i++) | ||||
@@ -629,9 +626,10 @@ namespace Tensorflow.Keras | |||||
} | } | ||||
else | else | ||||
{ | { | ||||
prev_output = successive_outputs[successive_outputs.Length - 1]; | |||||
prev_output = successive_outputs.Last(); | |||||
} | } | ||||
// output could be a tensor | |||||
output = tf.where(tiled_mask_t, output, prev_output); | output = tf.where(tiled_mask_t, output, prev_output); | ||||
var flat_states = Nest.Flatten(states).ToList(); | var flat_states = Nest.Flatten(states).ToList(); | ||||
@@ -661,13 +659,13 @@ namespace Tensorflow.Keras | |||||
} | } | ||||
} | } | ||||
last_output = successive_outputs[successive_outputs.Length - 1]; | |||||
new_states = successive_states[successive_states.Length - 1]; | |||||
last_output = successive_outputs.Last(); | |||||
new_states = successive_states.Last(); | |||||
outputs = tf.stack(successive_outputs); | outputs = tf.stack(successive_outputs); | ||||
if (zero_output_for_mask) | if (zero_output_for_mask) | ||||
{ | { | ||||
last_output = tf.where(_expand_mask(mask_list[mask_list.Length - 1], last_output), last_output, tf.zeros_like(last_output)); | |||||
last_output = tf.where(_expand_mask(mask_list.Last(), last_output), last_output, tf.zeros_like(last_output)); | |||||
outputs = tf.where(_expand_mask(mask, outputs, fixed_dim: 2), outputs, tf.zeros_like(outputs)); | outputs = tf.where(_expand_mask(mask, outputs, fixed_dim: 2), outputs, tf.zeros_like(outputs)); | ||||
} | } | ||||
else // mask is null | else // mask is null | ||||
@@ -689,8 +687,8 @@ namespace Tensorflow.Keras | |||||
successive_states = new Tensors { newStates }; | successive_states = new Tensors { newStates }; | ||||
} | } | ||||
} | } | ||||
last_output = successive_outputs[successive_outputs.Length - 1]; | |||||
new_states = successive_states[successive_states.Length - 1]; | |||||
last_output = successive_outputs.Last(); | |||||
new_states = successive_states.Last(); | |||||
outputs = tf.stack(successive_outputs); | outputs = tf.stack(successive_outputs); | ||||
} | } | ||||
} | } | ||||
@@ -701,6 +699,8 @@ namespace Tensorflow.Keras | |||||
// Create input tensor array, if the inputs is nested tensors, then it | // Create input tensor array, if the inputs is nested tensors, then it | ||||
// will be flattened first, and tensor array will be created one per | // will be flattened first, and tensor array will be created one per | ||||
// flattened tensor. | // flattened tensor. | ||||
var input_ta = new List<TensorArray>(); | var input_ta = new List<TensorArray>(); | ||||
for (int i = 0; i < flatted_inptus.Count; i++) | for (int i = 0; i < flatted_inptus.Count; i++) | ||||
{ | { | ||||
@@ -719,6 +719,7 @@ namespace Tensorflow.Keras | |||||
} | } | ||||
} | } | ||||
// Get the time(0) input and compute the output for that, the output will | // Get the time(0) input and compute the output for that, the output will | ||||
// be used to determine the dtype of output tensor array. Don't read from | // be used to determine the dtype of output tensor array. Don't read from | ||||
// input_ta due to TensorArray clear_after_read default to True. | // input_ta due to TensorArray clear_after_read default to True. | ||||
@@ -773,7 +774,7 @@ namespace Tensorflow.Keras | |||||
return res; | return res; | ||||
}; | }; | ||||
} | } | ||||
// TODO(Wanglongzhi2001), what the input_length's type should be(an integer or a single tensor)? | |||||
// TODO(Wanglongzhi2001), what the input_length's type should be(an integer or a single tensor), it could be an integer or tensor | |||||
else if (input_length is Tensor) | else if (input_length is Tensor) | ||||
{ | { | ||||
if (go_backwards) | if (go_backwards) | ||||
@@ -685,6 +685,34 @@ namespace Tensorflow.Keras.Layers | |||||
Alpha = alpha | Alpha = alpha | ||||
}); | }); | ||||
public IRnnCell SimpleRNNCell( | |||||
int units, | |||||
string activation = "tanh", | |||||
bool use_bias = true, | |||||
string kernel_initializer = "glorot_uniform", | |||||
string recurrent_initializer = "orthogonal", | |||||
string bias_initializer = "zeros", | |||||
float dropout = 0f, | |||||
float recurrent_dropout = 0f) | |||||
=> new SimpleRNNCell(new SimpleRNNCellArgs | |||||
{ | |||||
Units = units, | |||||
Activation = keras.activations.GetActivationFromName(activation), | |||||
UseBias = use_bias, | |||||
KernelInitializer = GetInitializerByName(kernel_initializer), | |||||
RecurrentInitializer = GetInitializerByName(recurrent_initializer), | |||||
Dropout = dropout, | |||||
RecurrentDropout = recurrent_dropout | |||||
}); | |||||
public IRnnCell StackedRNNCells( | |||||
IEnumerable<IRnnCell> cells) | |||||
=> new StackedRNNCells(new StackedRNNCellsArgs | |||||
{ | |||||
Cells = cells.ToList() | |||||
}); | |||||
/// <summary> | /// <summary> | ||||
/// | /// | ||||
/// </summary> | /// </summary> | ||||
@@ -709,6 +737,55 @@ namespace Tensorflow.Keras.Layers | |||||
ReturnState = return_state | ReturnState = return_state | ||||
}); | }); | ||||
/// <summary> | |||||
/// | |||||
/// </summary> | |||||
/// <param name="cell"></param> | |||||
/// <param name="return_sequences"></param> | |||||
/// <param name="return_state"></param> | |||||
/// <param name="go_backwards"></param> | |||||
/// <param name="stateful"></param> | |||||
/// <param name="unroll"></param> | |||||
/// <param name="time_major"></param> | |||||
/// <returns></returns> | |||||
public ILayer RNN( | |||||
IRnnCell cell, | |||||
bool return_sequences = false, | |||||
bool return_state = false, | |||||
bool go_backwards = false, | |||||
bool stateful = false, | |||||
bool unroll = false, | |||||
bool time_major = false) | |||||
=> new RNN(new RNNArgs | |||||
{ | |||||
Cell = cell, | |||||
ReturnSequences = return_sequences, | |||||
ReturnState = return_state, | |||||
GoBackwards = go_backwards, | |||||
Stateful = stateful, | |||||
Unroll = unroll, | |||||
TimeMajor = time_major | |||||
}); | |||||
public ILayer RNN( | |||||
IEnumerable<IRnnCell> cell, | |||||
bool return_sequences = false, | |||||
bool return_state = false, | |||||
bool go_backwards = false, | |||||
bool stateful = false, | |||||
bool unroll = false, | |||||
bool time_major = false) | |||||
=> new RNN(new RNNArgs | |||||
{ | |||||
Cells = cell.ToList(), | |||||
ReturnSequences = return_sequences, | |||||
ReturnState = return_state, | |||||
GoBackwards = go_backwards, | |||||
Stateful = stateful, | |||||
Unroll = unroll, | |||||
TimeMajor = time_major | |||||
}); | |||||
/// <summary> | /// <summary> | ||||
/// Long Short-Term Memory layer - Hochreiter 1997. | /// Long Short-Term Memory layer - Hochreiter 1997. | ||||
/// </summary> | /// </summary> | ||||
@@ -17,6 +17,21 @@ namespace Tensorflow.Keras.Layers.Rnn | |||||
} | } | ||||
protected void _create_non_trackable_mask_cache() | |||||
{ | |||||
} | |||||
public void reset_dropout_mask() | |||||
{ | |||||
} | |||||
public void reset_recurrent_dropout_mask() | |||||
{ | |||||
} | |||||
public Tensors? get_dropout_maskcell_for_cell(Tensors input, bool training, int count = 1) | public Tensors? get_dropout_maskcell_for_cell(Tensors input, bool training, int count = 1) | ||||
{ | { | ||||
if (dropout == 0f) | if (dropout == 0f) | ||||
@@ -38,7 +38,17 @@ namespace Tensorflow.Keras.Layers.Rnn | |||||
SupportsMasking = true; | SupportsMasking = true; | ||||
// if is StackedRnncell | // if is StackedRnncell | ||||
_cell = args.Cell; | |||||
if (args.Cells != null) | |||||
{ | |||||
_cell = new StackedRNNCells(new StackedRNNCellsArgs | |||||
{ | |||||
Cells = args.Cells | |||||
}); | |||||
} | |||||
else | |||||
{ | |||||
_cell = args.Cell; | |||||
} | |||||
// get input_shape | // get input_shape | ||||
_args = PreConstruct(args); | _args = PreConstruct(args); | ||||
@@ -122,6 +132,8 @@ namespace Tensorflow.Keras.Layers.Rnn | |||||
var state_shape = new int[] { (int)batch }.concat(flat_state.as_int_list()); | var state_shape = new int[] { (int)batch }.concat(flat_state.as_int_list()); | ||||
return new Shape(state_shape); | return new Shape(state_shape); | ||||
}; | }; | ||||
var state_shape = _get_state_shape(state_size); | var state_shape = _get_state_shape(state_size); | ||||
return new List<Shape> { output_shape, state_shape }; | return new List<Shape> { output_shape, state_shape }; | ||||
@@ -240,7 +252,7 @@ namespace Tensorflow.Keras.Layers.Rnn | |||||
if (_cell is StackedRNNCells) | if (_cell is StackedRNNCells) | ||||
{ | { | ||||
var stack_cell = _cell as StackedRNNCells; | var stack_cell = _cell as StackedRNNCells; | ||||
foreach (var cell in stack_cell.Cells) | |||||
foreach (IRnnCell cell in stack_cell.Cells) | |||||
{ | { | ||||
_maybe_reset_cell_dropout_mask(cell); | _maybe_reset_cell_dropout_mask(cell); | ||||
} | } | ||||
@@ -253,7 +265,7 @@ namespace Tensorflow.Keras.Layers.Rnn | |||||
} | } | ||||
Shape input_shape; | Shape input_shape; | ||||
if (!inputs.IsSingle()) | |||||
if (!inputs.IsNested()) | |||||
{ | { | ||||
// In the case of nested input, use the first element for shape check | // In the case of nested input, use the first element for shape check | ||||
// input_shape = nest.flatten(inputs)[0].shape; | // input_shape = nest.flatten(inputs)[0].shape; | ||||
@@ -267,7 +279,7 @@ namespace Tensorflow.Keras.Layers.Rnn | |||||
var timesteps = _args.TimeMajor ? input_shape[0] : input_shape[1]; | var timesteps = _args.TimeMajor ? input_shape[0] : input_shape[1]; | ||||
if (_args.Unroll && timesteps != null) | |||||
if (_args.Unroll && timesteps == null) | |||||
{ | { | ||||
throw new ValueError( | throw new ValueError( | ||||
"Cannot unroll a RNN if the " + | "Cannot unroll a RNN if the " + | ||||
@@ -302,7 +314,6 @@ namespace Tensorflow.Keras.Layers.Rnn | |||||
states = new Tensors(states.SkipLast(_num_constants)); | states = new Tensors(states.SkipLast(_num_constants)); | ||||
states = len(states) == 1 && is_tf_rnn_cell ? new Tensors(states[0]) : states; | states = len(states) == 1 && is_tf_rnn_cell ? new Tensors(states[0]) : states; | ||||
var (output, new_states) = _cell.Apply(inputs, states, optional_args: new RnnOptionalArgs() { Constants = constants }); | var (output, new_states) = _cell.Apply(inputs, states, optional_args: new RnnOptionalArgs() { Constants = constants }); | ||||
// TODO(Wanglongzhi2001),should cell_call_fn's return value be Tensors, Tensors? | |||||
return (output, new_states.Single); | return (output, new_states.Single); | ||||
}; | }; | ||||
} | } | ||||
@@ -310,13 +321,14 @@ namespace Tensorflow.Keras.Layers.Rnn | |||||
{ | { | ||||
step = (inputs, states) => | step = (inputs, states) => | ||||
{ | { | ||||
states = len(states) == 1 && is_tf_rnn_cell ? new Tensors(states[0]) : states; | |||||
states = len(states) == 1 && is_tf_rnn_cell ? new Tensors(states.First()) : states; | |||||
var (output, new_states) = _cell.Apply(inputs, states); | var (output, new_states) = _cell.Apply(inputs, states); | ||||
return (output, new_states.Single); | |||||
return (output, new_states); | |||||
}; | }; | ||||
} | } | ||||
var (last_output, outputs, states) = keras.backend.rnn(step, | |||||
var (last_output, outputs, states) = keras.backend.rnn( | |||||
step, | |||||
inputs, | inputs, | ||||
initial_state, | initial_state, | ||||
constants: constants, | constants: constants, | ||||
@@ -394,6 +406,7 @@ namespace Tensorflow.Keras.Layers.Rnn | |||||
initial_state = null; | initial_state = null; | ||||
inputs = inputs[0]; | inputs = inputs[0]; | ||||
} | } | ||||
if (_args.Stateful) | if (_args.Stateful) | ||||
{ | { | ||||
@@ -402,7 +415,7 @@ namespace Tensorflow.Keras.Layers.Rnn | |||||
var tmp = new Tensor[] { }; | var tmp = new Tensor[] { }; | ||||
foreach (var s in nest.flatten(States)) | foreach (var s in nest.flatten(States)) | ||||
{ | { | ||||
tmp.add(tf.math.count_nonzero((Tensor)s)); | |||||
tmp.add(tf.math.count_nonzero(s.Single())); | |||||
} | } | ||||
var non_zero_count = tf.add_n(tmp); | var non_zero_count = tf.add_n(tmp); | ||||
//initial_state = tf.cond(non_zero_count > 0, () => States, () => initial_state); | //initial_state = tf.cond(non_zero_count > 0, () => States, () => initial_state); | ||||
@@ -415,6 +428,15 @@ namespace Tensorflow.Keras.Layers.Rnn | |||||
{ | { | ||||
initial_state = States; | initial_state = States; | ||||
} | } | ||||
// TODO(Wanglongzhi2001), | |||||
// initial_state = tf.nest.map_structure( | |||||
//# When the layer has a inferred dtype, use the dtype from the | |||||
//# cell. | |||||
// lambda v: tf.cast( | |||||
// v, self.compute_dtype or self.cell.compute_dtype | |||||
// ), | |||||
// initial_state, | |||||
// ) | |||||
} | } | ||||
else if (initial_state is null) | else if (initial_state is null) | ||||
@@ -424,10 +446,9 @@ namespace Tensorflow.Keras.Layers.Rnn | |||||
if (initial_state.Length != States.Length) | if (initial_state.Length != States.Length) | ||||
{ | { | ||||
throw new ValueError( | |||||
$"Layer {this} expects {States.Length} state(s), " + | |||||
$"but it received {initial_state.Length} " + | |||||
$"initial state(s). Input received: {inputs}"); | |||||
throw new ValueError($"Layer {this} expects {States.Length} state(s), " + | |||||
$"but it received {initial_state.Length} " + | |||||
$"initial state(s). Input received: {inputs}"); | |||||
} | } | ||||
return (inputs, initial_state, constants); | return (inputs, initial_state, constants); | ||||
@@ -458,11 +479,11 @@ namespace Tensorflow.Keras.Layers.Rnn | |||||
void _maybe_reset_cell_dropout_mask(ILayer cell) | void _maybe_reset_cell_dropout_mask(ILayer cell) | ||||
{ | { | ||||
//if (cell is DropoutRNNCellMixin) | |||||
//{ | |||||
// cell.reset_dropout_mask(); | |||||
// cell.reset_recurrent_dropout_mask(); | |||||
//} | |||||
if (cell is DropoutRNNCellMixin CellDRCMixin) | |||||
{ | |||||
CellDRCMixin.reset_dropout_mask(); | |||||
CellDRCMixin.reset_recurrent_dropout_mask(); | |||||
} | |||||
} | } | ||||
private static RNNArgs PreConstruct(RNNArgs args) | private static RNNArgs PreConstruct(RNNArgs args) | ||||
@@ -537,15 +558,24 @@ namespace Tensorflow.Keras.Layers.Rnn | |||||
protected Tensors get_initial_state(Tensors inputs) | protected Tensors get_initial_state(Tensors inputs) | ||||
{ | { | ||||
var get_initial_state_fn = _cell.GetType().GetMethod("get_initial_state"); | |||||
var input = inputs[0]; | var input = inputs[0]; | ||||
var input_shape = input.shape; | |||||
var input_shape = inputs.shape; | |||||
var batch_size = _args.TimeMajor ? input_shape[1] : input_shape[0]; | var batch_size = _args.TimeMajor ? input_shape[1] : input_shape[0]; | ||||
var dtype = input.dtype; | var dtype = input.dtype; | ||||
Tensors init_state; | |||||
if (_cell is RnnCellBase rnn_base_cell) | |||||
Tensors init_state = new Tensors(); | |||||
if(get_initial_state_fn != null) | |||||
{ | { | ||||
init_state = rnn_base_cell.GetInitialState(null, batch_size, dtype); | |||||
init_state = (Tensors)get_initial_state_fn.Invoke(_cell, new object[] { inputs, batch_size, dtype }); | |||||
} | } | ||||
//if (_cell is RnnCellBase rnn_base_cell) | |||||
//{ | |||||
// init_state = rnn_base_cell.GetInitialState(null, batch_size, dtype); | |||||
//} | |||||
else | else | ||||
{ | { | ||||
init_state = RnnUtils.generate_zero_filled_state(batch_size, _cell.StateSize, dtype); | init_state = RnnUtils.generate_zero_filled_state(batch_size, _cell.StateSize, dtype); | ||||
@@ -6,6 +6,7 @@ using Tensorflow.Keras.Engine; | |||||
using Tensorflow.Keras.Saving; | using Tensorflow.Keras.Saving; | ||||
using Tensorflow.Common.Types; | using Tensorflow.Common.Types; | ||||
using Tensorflow.Common.Extensions; | using Tensorflow.Common.Extensions; | ||||
using Tensorflow.Keras.Utils; | |||||
namespace Tensorflow.Keras.Layers.Rnn | namespace Tensorflow.Keras.Layers.Rnn | ||||
{ | { | ||||
@@ -77,8 +78,10 @@ namespace Tensorflow.Keras.Layers.Rnn | |||||
var rec_dp_mask = get_recurrent_dropout_maskcell_for_cell(prev_output, training.Value); | var rec_dp_mask = get_recurrent_dropout_maskcell_for_cell(prev_output, training.Value); | ||||
Tensor h; | Tensor h; | ||||
var ranks = inputs.rank; | |||||
if (dp_mask != null) | if (dp_mask != null) | ||||
{ | { | ||||
h = math_ops.matmul(math_ops.multiply(inputs.Single, dp_mask.Single), _kernel.AsTensor()); | h = math_ops.matmul(math_ops.multiply(inputs.Single, dp_mask.Single), _kernel.AsTensor()); | ||||
} | } | ||||
else | else | ||||
@@ -95,7 +98,7 @@ namespace Tensorflow.Keras.Layers.Rnn | |||||
{ | { | ||||
prev_output = math_ops.multiply(prev_output, rec_dp_mask); | prev_output = math_ops.multiply(prev_output, rec_dp_mask); | ||||
} | } | ||||
var tmp = _recurrent_kernel.AsTensor(); | |||||
Tensor output = h + math_ops.matmul(prev_output, _recurrent_kernel.AsTensor()); | Tensor output = h + math_ops.matmul(prev_output, _recurrent_kernel.AsTensor()); | ||||
if (_args.Activation != null) | if (_args.Activation != null) | ||||
@@ -113,5 +116,10 @@ namespace Tensorflow.Keras.Layers.Rnn | |||||
return new Tensors(output, output); | return new Tensors(output, output); | ||||
} | } | ||||
} | } | ||||
public Tensors get_initial_state(Tensors inputs = null, long? batch_size = null, TF_DataType? dtype = null) | |||||
{ | |||||
return RnnUtils.generate_zero_filled_state_for_cell(this, inputs, batch_size.Value, dtype.Value); | |||||
} | |||||
} | } | ||||
} | } |
@@ -1,17 +1,20 @@ | |||||
using System; | using System; | ||||
using System.Collections.Generic; | using System.Collections.Generic; | ||||
using System.ComponentModel; | using System.ComponentModel; | ||||
using System.Linq; | |||||
using Tensorflow.Common.Extensions; | |||||
using Tensorflow.Common.Types; | using Tensorflow.Common.Types; | ||||
using Tensorflow.Keras.ArgsDefinition; | using Tensorflow.Keras.ArgsDefinition; | ||||
using Tensorflow.Keras.ArgsDefinition.Rnn; | using Tensorflow.Keras.ArgsDefinition.Rnn; | ||||
using Tensorflow.Keras.Engine; | using Tensorflow.Keras.Engine; | ||||
using Tensorflow.Keras.Saving; | using Tensorflow.Keras.Saving; | ||||
using Tensorflow.Keras.Utils; | |||||
namespace Tensorflow.Keras.Layers.Rnn | namespace Tensorflow.Keras.Layers.Rnn | ||||
{ | { | ||||
public class StackedRNNCells : Layer, IRnnCell | public class StackedRNNCells : Layer, IRnnCell | ||||
{ | { | ||||
public IList<RnnCell> Cells { get; set; } | |||||
public IList<IRnnCell> Cells { get; set; } | |||||
public bool reverse_state_order; | public bool reverse_state_order; | ||||
public StackedRNNCells(StackedRNNCellsArgs args) : base(args) | public StackedRNNCells(StackedRNNCellsArgs args) : base(args) | ||||
@@ -20,8 +23,19 @@ namespace Tensorflow.Keras.Layers.Rnn | |||||
{ | { | ||||
args.Kwargs = new Dictionary<string, object>(); | args.Kwargs = new Dictionary<string, object>(); | ||||
} | } | ||||
foreach (var cell in args.Cells) | |||||
{ | |||||
//Type type = cell.GetType(); | |||||
//var CallMethodInfo = type.GetMethod("Call"); | |||||
//if (CallMethodInfo == null) | |||||
//{ | |||||
// throw new ValueError( | |||||
// "All cells must have a `Call` method. " + | |||||
// $"Received cell without a `Call` method: {cell}"); | |||||
//} | |||||
} | |||||
Cells = args.Cells; | Cells = args.Cells; | ||||
reverse_state_order = (bool)args.Kwargs.Get("reverse_state_order", false); | reverse_state_order = (bool)args.Kwargs.Get("reverse_state_order", false); | ||||
if (reverse_state_order) | if (reverse_state_order) | ||||
@@ -33,91 +47,112 @@ namespace Tensorflow.Keras.Layers.Rnn | |||||
} | } | ||||
} | } | ||||
public object state_size | |||||
public GeneralizedTensorShape StateSize | |||||
{ | { | ||||
get => throw new NotImplementedException(); | |||||
//@property | |||||
//def state_size(self) : | |||||
// return tuple(c.state_size for c in | |||||
// (self.cells[::- 1] if self.reverse_state_order else self.cells)) | |||||
get | |||||
{ | |||||
GeneralizedTensorShape state_size = new GeneralizedTensorShape(1, Cells.Count); | |||||
if (reverse_state_order && Cells.Count > 0) | |||||
{ | |||||
var idxAndCell = Cells.Reverse().Select((cell, idx) => (idx, cell)); | |||||
foreach (var cell in idxAndCell) | |||||
{ | |||||
state_size.Shapes[cell.idx] = cell.cell.StateSize.Shapes.First(); | |||||
} | |||||
} | |||||
else | |||||
{ | |||||
//foreach (var cell in Cells) | |||||
//{ | |||||
// state_size.Shapes.add(cell.StateSize.Shapes.First()); | |||||
//} | |||||
var idxAndCell = Cells.Select((cell, idx) => (idx, cell)); | |||||
foreach (var cell in idxAndCell) | |||||
{ | |||||
state_size.Shapes[cell.idx] = cell.cell.StateSize.Shapes.First(); | |||||
} | |||||
} | |||||
return state_size; | |||||
} | |||||
} | } | ||||
public object output_size | public object output_size | ||||
{ | { | ||||
get | get | ||||
{ | { | ||||
var lastCell = Cells[Cells.Count - 1]; | |||||
if (lastCell.output_size != -1) | |||||
var lastCell = Cells.LastOrDefault(); | |||||
if (lastCell.OutputSize.ToSingleShape() != -1) | |||||
{ | { | ||||
return lastCell.output_size; | |||||
return lastCell.OutputSize; | |||||
} | } | ||||
else if (RNN.is_multiple_state(lastCell.StateSize)) | else if (RNN.is_multiple_state(lastCell.StateSize)) | ||||
{ | { | ||||
// return ((dynamic)Cells[-1].state_size)[0]; | |||||
throw new NotImplementedException(""); | |||||
return lastCell.StateSize.First(); | |||||
//throw new NotImplementedException(""); | |||||
} | } | ||||
else | else | ||||
{ | { | ||||
return Cells[-1].state_size; | |||||
return lastCell.StateSize; | |||||
} | } | ||||
} | } | ||||
} | } | ||||
public object get_initial_state() | |||||
public Tensors get_initial_state(Tensors inputs = null, long? batch_size = null, TF_DataType? dtype = null) | |||||
{ | { | ||||
throw new NotImplementedException(); | |||||
// def get_initial_state(self, inputs= None, batch_size= None, dtype= None) : | |||||
// initial_states = [] | |||||
// for cell in self.cells[::- 1] if self.reverse_state_order else self.cells: | |||||
// get_initial_state_fn = getattr(cell, 'get_initial_state', None) | |||||
// if get_initial_state_fn: | |||||
// initial_states.append(get_initial_state_fn( | |||||
// inputs=inputs, batch_size=batch_size, dtype=dtype)) | |||||
// else: | |||||
// initial_states.append(_generate_zero_filled_state_for_cell( | |||||
// cell, inputs, batch_size, dtype)) | |||||
// return tuple(initial_states) | |||||
var cells = reverse_state_order ? Cells.Reverse() : Cells; | |||||
Tensors initial_states = new Tensors(); | |||||
foreach (var cell in cells) | |||||
{ | |||||
var get_initial_state_fn = cell.GetType().GetMethod("get_initial_state"); | |||||
if (get_initial_state_fn != null) | |||||
{ | |||||
var result = (Tensors)get_initial_state_fn.Invoke(cell, new object[] { inputs, batch_size, dtype }); | |||||
initial_states.Add(result); | |||||
} | |||||
else | |||||
{ | |||||
initial_states.Add(RnnUtils.generate_zero_filled_state_for_cell(cell, inputs, batch_size.Value, dtype.Value)); | |||||
} | |||||
} | |||||
return initial_states; | |||||
} | } | ||||
public object call() | |||||
protected override Tensors Call(Tensors inputs, Tensors state = null, bool? training = null, IOptionalArgs? optional_args = null) | |||||
{ | { | ||||
throw new NotImplementedException(); | |||||
// def call(self, inputs, states, constants= None, training= None, ** kwargs): | |||||
// # Recover per-cell states. | |||||
// state_size = (self.state_size[::- 1] | |||||
// if self.reverse_state_order else self.state_size) | |||||
// nested_states = nest.pack_sequence_as(state_size, nest.flatten(states)) | |||||
// # Call the cells in order and store the returned states. | |||||
// new_nested_states = [] | |||||
// for cell, states in zip(self.cells, nested_states) : | |||||
// states = states if nest.is_nested(states) else [states] | |||||
//# TF cell does not wrap the state into list when there is only one state. | |||||
// is_tf_rnn_cell = getattr(cell, '_is_tf_rnn_cell', None) is not None | |||||
// states = states[0] if len(states) == 1 and is_tf_rnn_cell else states | |||||
// if generic_utils.has_arg(cell.call, 'training'): | |||||
// kwargs['training'] = training | |||||
// else: | |||||
// kwargs.pop('training', None) | |||||
// # Use the __call__ function for callable objects, eg layers, so that it | |||||
// # will have the proper name scopes for the ops, etc. | |||||
// cell_call_fn = cell.__call__ if callable(cell) else cell.call | |||||
// if generic_utils.has_arg(cell.call, 'constants'): | |||||
// inputs, states = cell_call_fn(inputs, states, | |||||
// constants= constants, ** kwargs) | |||||
// else: | |||||
// inputs, states = cell_call_fn(inputs, states, ** kwargs) | |||||
// new_nested_states.append(states) | |||||
// Recover per-cell states. | |||||
var state_size = reverse_state_order ? StateSize.Reverse() : StateSize; | |||||
var nested_states = reverse_state_order ? state.Flatten().Reverse() : state.Flatten(); | |||||
// return inputs, nest.pack_sequence_as(state_size, | |||||
// nest.flatten(new_nested_states)) | |||||
var new_nest_states = new Tensors(); | |||||
// Call the cells in order and store the returned states. | |||||
foreach (var (cell, states) in zip(Cells, nested_states)) | |||||
{ | |||||
// states = states if tf.nest.is_nested(states) else [states] | |||||
var type = cell.GetType(); | |||||
bool IsTFRnnCell = type.GetProperty("IsTFRnnCell") != null; | |||||
state = len(state) == 1 && IsTFRnnCell ? state.FirstOrDefault() : state; | |||||
RnnOptionalArgs? rnn_optional_args = optional_args as RnnOptionalArgs; | |||||
Tensors? constants = rnn_optional_args?.Constants; | |||||
Tensors new_states; | |||||
(inputs, new_states) = cell.Apply(inputs, states, optional_args: new RnnOptionalArgs() { Constants = constants }); | |||||
new_nest_states.Add(new_states); | |||||
} | |||||
new_nest_states = reverse_state_order ? new_nest_states.Reverse().ToArray() : new_nest_states.ToArray(); | |||||
return new Nest<Tensor>(new List<Nest<Tensor>> { | |||||
new Nest<Tensor>(new List<Nest<Tensor>> { new Nest<Tensor>(inputs.Single()) }), new Nest<Tensor>(new_nest_states) }) | |||||
.ToTensors(); | |||||
} | } | ||||
public void build() | public void build() | ||||
{ | { | ||||
throw new NotImplementedException(); | |||||
built = true; | |||||
// @tf_utils.shape_type_conversion | // @tf_utils.shape_type_conversion | ||||
// def build(self, input_shape) : | // def build(self, input_shape) : | ||||
// if isinstance(input_shape, list) : | // if isinstance(input_shape, list) : | ||||
@@ -168,9 +203,9 @@ namespace Tensorflow.Keras.Layers.Rnn | |||||
{ | { | ||||
throw new NotImplementedException(); | throw new NotImplementedException(); | ||||
} | } | ||||
public GeneralizedTensorShape StateSize => throw new NotImplementedException(); | |||||
public GeneralizedTensorShape OutputSize => throw new NotImplementedException(); | public GeneralizedTensorShape OutputSize => throw new NotImplementedException(); | ||||
public bool IsTFRnnCell => throw new NotImplementedException(); | |||||
public bool IsTFRnnCell => true; | |||||
public bool SupportOptionalArgs => throw new NotImplementedException(); | public bool SupportOptionalArgs => throw new NotImplementedException(); | ||||
} | } | ||||
} | } |
@@ -2,6 +2,7 @@ using Microsoft.VisualStudio.TestTools.UnitTesting; | |||||
using System.Collections.Generic; | using System.Collections.Generic; | ||||
using Tensorflow.Keras.Callbacks; | using Tensorflow.Keras.Callbacks; | ||||
using Tensorflow.Keras.Engine; | using Tensorflow.Keras.Engine; | ||||
using Tensorflow.NumPy; | |||||
using static Tensorflow.KerasApi; | using static Tensorflow.KerasApi; | ||||
@@ -18,7 +19,7 @@ namespace Tensorflow.Keras.UnitTest.Callbacks | |||||
var layers = keras.layers; | var layers = keras.layers; | ||||
var model = keras.Sequential(new List<ILayer> | var model = keras.Sequential(new List<ILayer> | ||||
{ | { | ||||
layers.Rescaling(1.0f / 255, input_shape: (32, 32, 3)), | |||||
layers.Rescaling(1.0f / 255, input_shape: (28, 28, 1)), | |||||
layers.Conv2D(32, 3, padding: "same", activation: keras.activations.Relu), | layers.Conv2D(32, 3, padding: "same", activation: keras.activations.Relu), | ||||
layers.MaxPooling2D(), | layers.MaxPooling2D(), | ||||
layers.Flatten(), | layers.Flatten(), | ||||
@@ -36,8 +37,20 @@ namespace Tensorflow.Keras.UnitTest.Callbacks | |||||
var num_epochs = 3; | var num_epochs = 3; | ||||
var batch_size = 8; | var batch_size = 8; | ||||
var ((x_train, y_train), (x_test, y_test)) = keras.datasets.cifar10.load_data(); | |||||
x_train = x_train / 255.0f; | |||||
var data_loader = new MnistModelLoader(); | |||||
var dataset = data_loader.LoadAsync(new ModelLoadSetting | |||||
{ | |||||
TrainDir = "mnist", | |||||
OneHot = false, | |||||
ValidationSize = 59900, | |||||
}).Result; | |||||
NDArray x1 = np.reshape(dataset.Train.Data, (dataset.Train.Data.shape[0], 28, 28, 1)); | |||||
NDArray x2 = x1; | |||||
var x = new NDArray[] { x1, x2 }; | |||||
// define a CallbackParams first, the parameters you pass al least contain Model and Epochs. | // define a CallbackParams first, the parameters you pass al least contain Model and Epochs. | ||||
CallbackParams callback_parameters = new CallbackParams | CallbackParams callback_parameters = new CallbackParams | ||||
{ | { | ||||
@@ -47,10 +60,8 @@ namespace Tensorflow.Keras.UnitTest.Callbacks | |||||
// define your earlystop | // define your earlystop | ||||
ICallback earlystop = new EarlyStopping(callback_parameters, "accuracy"); | ICallback earlystop = new EarlyStopping(callback_parameters, "accuracy"); | ||||
// define a callbcaklist, then add the earlystopping to it. | // define a callbcaklist, then add the earlystopping to it. | ||||
var callbacks = new List<ICallback>(); | |||||
callbacks.add(earlystop); | |||||
model.fit(x_train[new Slice(0, 2000)], y_train[new Slice(0, 2000)], batch_size, num_epochs, callbacks: callbacks); | |||||
var callbacks = new List<ICallback>{ earlystop}; | |||||
model.fit(x, dataset.Train.Labels, batch_size, num_epochs, callbacks: callbacks); | |||||
} | } | ||||
} | } | ||||
@@ -4,25 +4,111 @@ using System.Collections.Generic; | |||||
using System.Linq; | using System.Linq; | ||||
using System.Text; | using System.Text; | ||||
using System.Threading.Tasks; | using System.Threading.Tasks; | ||||
using Tensorflow.Common.Types; | |||||
using Tensorflow.Keras.Engine; | |||||
using Tensorflow.Keras.Layers.Rnn; | |||||
using Tensorflow.Keras.Saving; | |||||
using Tensorflow.NumPy; | using Tensorflow.NumPy; | ||||
using Tensorflow.Train; | |||||
using static Tensorflow.Binding; | using static Tensorflow.Binding; | ||||
using static Tensorflow.KerasApi; | |||||
namespace Tensorflow.Keras.UnitTest.Layers | namespace Tensorflow.Keras.UnitTest.Layers | ||||
{ | { | ||||
[TestClass] | [TestClass] | ||||
public class Rnn | public class Rnn | ||||
{ | { | ||||
[TestMethod] | |||||
public void SimpleRNNCell() | |||||
{ | |||||
//var cell = tf.keras.layers.SimpleRNNCell(64, dropout: 0.5f, recurrent_dropout: 0.5f); | |||||
//var h0 = new Tensors { tf.zeros(new Shape(4, 64)) }; | |||||
//var x = tf.random.normal((4, 100)); | |||||
//var (y, h1) = cell.Apply(inputs: x, states: h0); | |||||
//var h2 = h1; | |||||
//Assert.AreEqual((4, 64), y.shape); | |||||
//Assert.AreEqual((4, 64), h2[0].shape); | |||||
//var model = keras.Sequential(new List<ILayer> | |||||
//{ | |||||
// keras.layers.InputLayer(input_shape: (4,100)), | |||||
// keras.layers.SimpleRNNCell(64) | |||||
//}); | |||||
//model.summary(); | |||||
var cell = tf.keras.layers.SimpleRNNCell(64, dropout: 0.5f, recurrent_dropout: 0.5f); | |||||
var h0 = new Tensors { tf.zeros(new Shape(4, 64)) }; | |||||
var x = tf.random.normal((4, 100)); | |||||
var (y, h1) = cell.Apply(inputs: x, states: h0); | |||||
var h2 = h1; | |||||
Assert.AreEqual((4, 64), y.shape); | |||||
Assert.AreEqual((4, 64), h2[0].shape); | |||||
} | |||||
[TestMethod] | |||||
public void StackedRNNCell() | |||||
{ | |||||
var inputs = tf.ones((32, 10)); | |||||
var states = new Tensors { tf.zeros((32, 4)), tf.zeros((32, 5)) }; | |||||
var cells = new IRnnCell[] { tf.keras.layers.SimpleRNNCell(4), tf.keras.layers.SimpleRNNCell(5) }; | |||||
var stackedRNNCell = tf.keras.layers.StackedRNNCells(cells); | |||||
var (output, state) = stackedRNNCell.Apply(inputs, states); | |||||
Console.WriteLine(output); | |||||
Console.WriteLine(state.shape); | |||||
Assert.AreEqual((32, 5), output.shape); | |||||
Assert.AreEqual((32, 4), state[0].shape); | |||||
} | |||||
[TestMethod] | [TestMethod] | ||||
public void SimpleRNN() | public void SimpleRNN() | ||||
{ | { | ||||
var inputs = np.arange(6 * 10 * 8).reshape((6, 10, 8)).astype(np.float32); | |||||
/*var simple_rnn = keras.layers.SimpleRNN(4); | |||||
var output = simple_rnn.Apply(inputs); | |||||
Assert.AreEqual((32, 4), output.shape);*/ | |||||
var simple_rnn = tf.keras.layers.SimpleRNN(4, return_sequences: true, return_state: true); | |||||
var (whole_sequence_output, final_state) = simple_rnn.Apply(inputs); | |||||
Console.WriteLine(whole_sequence_output); | |||||
Console.WriteLine(final_state); | |||||
//var inputs = np.arange(6 * 10 * 8).reshape((6, 10, 8)).astype(np.float32); | |||||
///*var simple_rnn = keras.layers.SimpleRNN(4); | |||||
//var output = simple_rnn.Apply(inputs); | |||||
//Assert.AreEqual((32, 4), output.shape);*/ | |||||
//var simple_rnn = tf.keras.layers.SimpleRNN(4, return_sequences: true, return_state: true); | |||||
//var (whole_sequence_output, final_state) = simple_rnn.Apply(inputs); | |||||
//Assert.AreEqual((6, 10, 4), whole_sequence_output.shape); | |||||
//Assert.AreEqual((6, 4), final_state.shape); | |||||
var inputs = keras.Input(shape: (10, 8)); | |||||
var x = keras.layers.SimpleRNN(4).Apply(inputs); | |||||
var output = keras.layers.Dense(10).Apply(x); | |||||
var model = keras.Model(inputs, output); | |||||
model.summary(); | |||||
} | |||||
[TestMethod] | |||||
public void RNNForSimpleRNNCell() | |||||
{ | |||||
var inputs = tf.random.normal((32, 10, 8)); | |||||
var cell = tf.keras.layers.SimpleRNNCell(10, dropout: 0.5f, recurrent_dropout: 0.5f); | |||||
var rnn = tf.keras.layers.RNN(cell: cell); | |||||
var output = rnn.Apply(inputs); | |||||
Assert.AreEqual((32, 10), output.shape); | |||||
} | } | ||||
[TestMethod] | |||||
public void RNNForStackedRNNCell() | |||||
{ | |||||
var inputs = tf.random.normal((32, 10, 8)); | |||||
var cells = new IRnnCell[] { tf.keras.layers.SimpleRNNCell(4), tf.keras.layers.SimpleRNNCell(5) }; | |||||
var stackedRNNCell = tf.keras.layers.StackedRNNCells(cells); | |||||
var rnn = tf.keras.layers.RNN(cell: stackedRNNCell); | |||||
var output = rnn.Apply(inputs); | |||||
Assert.AreEqual((32, 5), output.shape); | |||||
} | |||||
[TestMethod] | |||||
public void WlzTest() | |||||
{ | |||||
long[] b = { 1, 2, 3 }; | |||||
Shape a = new Shape(Unknown).concatenate(b); | |||||
Console.WriteLine(a); | |||||
} | |||||
} | } | ||||
} | } |