@@ -144,6 +144,20 @@ namespace Tensorflow | |||||
return layer.apply(inputs); | return layer.apply(inputs); | ||||
} | } | ||||
/// <summary> | |||||
/// Densely-connected layer class. aka fully-connected<br></br> | |||||
/// `outputs = activation(inputs * kernel + bias)` | |||||
/// </summary> | |||||
/// <param name="inputs"></param> | |||||
/// <param name="units">Python integer, dimensionality of the output space.</param> | |||||
/// <param name="activation"></param> | |||||
/// <param name="use_bias">Boolean, whether the layer uses a bias.</param> | |||||
/// <param name="kernel_initializer"></param> | |||||
/// <param name="bias_initializer"></param> | |||||
/// <param name="trainable"></param> | |||||
/// <param name="name"></param> | |||||
/// <param name="reuse"></param> | |||||
/// <returns></returns> | |||||
public Tensor dense(Tensor inputs, | public Tensor dense(Tensor inputs, | ||||
int units, | int units, | ||||
IActivation activation = null, | IActivation activation = null, | ||||
@@ -160,7 +174,8 @@ namespace Tensorflow | |||||
var layer = new Dense(units, activation, | var layer = new Dense(units, activation, | ||||
use_bias: use_bias, | use_bias: use_bias, | ||||
bias_initializer: bias_initializer, | bias_initializer: bias_initializer, | ||||
kernel_initializer: kernel_initializer); | |||||
kernel_initializer: kernel_initializer, | |||||
trainable: trainable); | |||||
return layer.apply(inputs); | return layer.apply(inputs); | ||||
} | } | ||||
@@ -14,6 +14,8 @@ | |||||
limitations under the License. | limitations under the License. | ||||
******************************************************************************/ | ******************************************************************************/ | ||||
using Tensorflow.Operations; | |||||
namespace Tensorflow | namespace Tensorflow | ||||
{ | { | ||||
public partial class tensorflow | public partial class tensorflow | ||||
@@ -211,6 +213,36 @@ namespace Tensorflow | |||||
/// <returns></returns> | /// <returns></returns> | ||||
public Tensor _clip_by_value(Tensor t, Tensor clip_value_min, Tensor clip_value_max, string name = null) | public Tensor _clip_by_value(Tensor t, Tensor clip_value_min, Tensor clip_value_max, string name = null) | ||||
=> gen_math_ops._clip_by_value(t, clip_value_min, clip_value_max); | => gen_math_ops._clip_by_value(t, clip_value_min, clip_value_max); | ||||
/// <summary> | |||||
/// Clips tensor values to a specified min and max. | |||||
/// </summary> | |||||
/// <param name="t"> | |||||
/// A <c>Tensor</c>. | |||||
/// </param> | |||||
/// <param name="clip_value_min"> | |||||
/// A 0-D (scalar) <c>Tensor</c>, or a <c>Tensor</c> with the same shape | |||||
/// as <c>t</c>. The minimum value to clip by. | |||||
/// </param> | |||||
/// <param name="clip_value_max"> | |||||
/// A 0-D (scalar) <c>Tensor</c>, or a <c>Tensor</c> with the same shape | |||||
/// as <c>t</c>. The maximum value to clip by. | |||||
/// </param> | |||||
/// <param name="name"> | |||||
/// If specified, the created operation in the graph will be this one, otherwise it will be named 'ClipByValue'. | |||||
/// </param> | |||||
/// <returns> | |||||
/// A clipped <c>Tensor</c> with the same shape as input 't'. | |||||
/// The Operation can be fetched from the resulting Tensor, by fetching the Operation property from the result. | |||||
/// </returns> | |||||
/// <remarks> | |||||
/// Given a tensor <c>t</c>, this operation returns a tensor of the same type and | |||||
/// shape as <c>t</c> with its values clipped to <c>clip_value_min</c> and <c>clip_value_max</c>. | |||||
/// Any values less than <c>clip_value_min</c> are set to <c>clip_value_min</c>. Any values | |||||
/// greater than <c>clip_value_max</c> are set to <c>clip_value_max</c>. | |||||
/// </remarks> | |||||
public Tensor clip_by_value (Tensor t, Tensor clip_value_min, Tensor clip_value_max, string name = "ClipByValue") | |||||
=> gen_ops.clip_by_value(t, clip_value_min, clip_value_max, name); | |||||
public Tensor sub(Tensor a, Tensor b) | public Tensor sub(Tensor a, Tensor b) | ||||
=> gen_math_ops.sub(a, b); | => gen_math_ops.sub(a, b); | ||||
@@ -18,8 +18,8 @@ namespace Tensorflow | |||||
{ | { | ||||
public partial class tensorflow | public partial class tensorflow | ||||
{ | { | ||||
public Tensor convert_to_tensor(object value, | |||||
string name = null) => ops.convert_to_tensor(value, name: name); | |||||
public Tensor convert_to_tensor(object value, TF_DataType dtype = TF_DataType.DtInvalid, string name = null, TF_DataType preferred_dtype = TF_DataType.DtInvalid) | |||||
=> ops.convert_to_tensor(value, dtype, name, preferred_dtype); | |||||
public Tensor strided_slice(Tensor input, Tensor begin, Tensor end, Tensor strides = null, | public Tensor strided_slice(Tensor input, Tensor begin, Tensor end, Tensor strides = null, | ||||
int begin_mask = 0, | int begin_mask = 0, | ||||
@@ -14,20 +14,192 @@ | |||||
limitations under the License. | limitations under the License. | ||||
******************************************************************************/ | ******************************************************************************/ | ||||
using System; | |||||
using static Tensorflow.Binding; | |||||
namespace Tensorflow.Operations.Activation | namespace Tensorflow.Operations.Activation | ||||
{ | { | ||||
public class sigmoid : IActivation | |||||
{ | |||||
public Tensor Activate(Tensor x, string name = null) | |||||
{ | |||||
return tf.sigmoid(x); | |||||
} | |||||
} | |||||
public class tanh : IActivation | |||||
{ | |||||
public Tensor Activate(Tensor x, string name = null) | |||||
{ | |||||
return tf.tanh(x); | |||||
} | |||||
} | |||||
public class leakyrelu : IActivation | |||||
{ | |||||
private readonly float _alpha; | |||||
public leakyrelu(float alpha = 0.3f) { | |||||
_alpha = alpha; | |||||
} | |||||
public Tensor Activate(Tensor x, string name = null) | |||||
{ | |||||
return nn_ops.leaky_relu(x, _alpha); | |||||
} | |||||
} | |||||
public class elu : IActivation | |||||
{ | |||||
private readonly float _alpha; | |||||
public elu(float alpha = 0.1f) | |||||
{ | |||||
_alpha = alpha; | |||||
} | |||||
public Tensor Activate(Tensor x, string name = null) | |||||
{ | |||||
var res = gen_ops.elu(x); | |||||
if (Math.Abs(_alpha - 0.1f) < 0.00001f) | |||||
{ | |||||
return res; | |||||
} | |||||
return array_ops.@where(x > 0, res, _alpha * res); | |||||
} | |||||
} | |||||
public class softmax : IActivation | |||||
{ | |||||
private readonly int _axis; | |||||
/// <summary>Initializes a new instance of the <see cref="T:System.Object"></see> class.</summary> | |||||
public softmax(int axis = -1) | |||||
{ | |||||
_axis = axis; | |||||
} | |||||
public Tensor Activate(Tensor x, string name = null) | |||||
{ | |||||
return nn_ops.softmax(x, _axis); | |||||
} | |||||
} | |||||
public class softplus : IActivation | |||||
{ | |||||
public Tensor Activate(Tensor x, string name = null) | |||||
{ | |||||
return gen_ops.softplus(x); | |||||
} | |||||
} | |||||
public class softsign : IActivation | |||||
{ | |||||
public Tensor Activate(Tensor x, string name = null) | |||||
{ | |||||
return gen_ops.softsign(x); | |||||
} | |||||
} | |||||
public class linear : IActivation | |||||
{ | |||||
public Tensor Activate(Tensor x, string name = null) | |||||
{ | |||||
return x; | |||||
} | |||||
} | |||||
public class exponential : IActivation | |||||
{ | |||||
public Tensor Activate(Tensor x, string name = null) | |||||
{ | |||||
return tf.exp(x, name: name); | |||||
} | |||||
} | |||||
public class relu : IActivation | public class relu : IActivation | ||||
{ | { | ||||
public Tensor Activate(Tensor features, string name = null) | |||||
private readonly float _threshold; | |||||
private readonly float _alpha; | |||||
private readonly float? _maxValue; | |||||
public relu(float threshold = 0f, float alpha = 0.2f, float? max_value = null) | |||||
{ | |||||
_threshold = threshold; | |||||
_alpha = alpha; | |||||
_maxValue = max_value; | |||||
} | |||||
public Tensor Activate(Tensor x, string name = null) | |||||
{ | { | ||||
OpDefLibrary _op_def_lib = new OpDefLibrary(); | |||||
//based on keras/backend.py | |||||
if (Math.Abs(_alpha) > 0.000001f) | |||||
{ | |||||
if (!_maxValue.HasValue && Math.Abs(_threshold) < 0.0001) | |||||
{ | |||||
return nn_ops.leaky_relu(x, _alpha); | |||||
} | |||||
} | |||||
Tensor negative_part; | |||||
if (Math.Abs(_threshold) > 0.000001f) | |||||
{ | |||||
negative_part = gen_ops.relu(-x + _threshold); | |||||
} else | |||||
{ | |||||
negative_part = gen_ops.relu(-x + _threshold); | |||||
} | |||||
if (Math.Abs(_threshold) > 0.000001f) | |||||
{ | |||||
x = x * math_ops.cast(tf.greater(x, _threshold), TF_DataType.TF_FLOAT); | |||||
} else if (Math.Abs(_maxValue.Value - 6f) < 0.0001f) | |||||
{ | |||||
x = gen_ops.relu6(x); | |||||
} else | |||||
{ | |||||
x = gen_ops.relu(x); | |||||
} | |||||
bool clip_max = _maxValue.HasValue; | |||||
if (clip_max) | |||||
{ | |||||
Tensor maxval = constant_op.constant(_maxValue, x.dtype.as_base_dtype()); | |||||
var zero = constant_op.constant(0.0f, x.dtype.as_base_dtype()); | |||||
x = gen_ops.clip_by_value(x, zero, maxval); | |||||
} | |||||
var _op = _op_def_lib._apply_op_helper("Relu", name: name, args: new | |||||
if (Math.Abs(_alpha) > 0.00001) | |||||
{ | { | ||||
features | |||||
}); | |||||
var a = constant_op.constant(_alpha, x.dtype.as_base_dtype()); | |||||
x -= a * negative_part; | |||||
} | |||||
return _op.outputs[0]; | |||||
return x; | |||||
} | |||||
} | |||||
public class selu : IActivation | |||||
{ | |||||
public Tensor Activate(Tensor x, string name = null) | |||||
{ | |||||
const float alpha = 1.6732632423543772848170429916717f; | |||||
const float scale = 1.0507009873554804934193349852946f; | |||||
return scale * new elu(alpha).Activate(x, name); | |||||
} | |||||
} | |||||
public class hard_sigmoid : IActivation | |||||
{ | |||||
public Tensor Activate(Tensor x, string name = null) | |||||
{ | |||||
x = (0.2 * x) + 0.5; | |||||
var zero = tf.convert_to_tensor(0.0f, x.dtype.as_base_dtype()); | |||||
var one = tf.convert_to_tensor(1.0f, x.dtype.as_base_dtype()); | |||||
return tf.clip_by_value(x, zero, one); | |||||
} | } | ||||
} | } | ||||
} | |||||
} |