diff --git a/src/TensorFlowNET.Core/APIs/tf.layers.cs b/src/TensorFlowNET.Core/APIs/tf.layers.cs index 089dd8a5..dd74de2d 100644 --- a/src/TensorFlowNET.Core/APIs/tf.layers.cs +++ b/src/TensorFlowNET.Core/APIs/tf.layers.cs @@ -144,6 +144,20 @@ namespace Tensorflow return layer.apply(inputs); } + /// + /// Densely-connected layer class. aka fully-connected

+ /// `outputs = activation(inputs * kernel + bias)` + ///
+ /// + /// Python integer, dimensionality of the output space. + /// + /// Boolean, whether the layer uses a bias. + /// + /// + /// + /// + /// + /// public Tensor dense(Tensor inputs, int units, IActivation activation = null, @@ -160,7 +174,8 @@ namespace Tensorflow var layer = new Dense(units, activation, use_bias: use_bias, bias_initializer: bias_initializer, - kernel_initializer: kernel_initializer); + kernel_initializer: kernel_initializer, + trainable: trainable); return layer.apply(inputs); } diff --git a/src/TensorFlowNET.Core/APIs/tf.math.cs b/src/TensorFlowNET.Core/APIs/tf.math.cs index ec081cc4..985e3f73 100644 --- a/src/TensorFlowNET.Core/APIs/tf.math.cs +++ b/src/TensorFlowNET.Core/APIs/tf.math.cs @@ -14,6 +14,8 @@ limitations under the License. ******************************************************************************/ +using Tensorflow.Operations; + namespace Tensorflow { public partial class tensorflow @@ -211,6 +213,36 @@ namespace Tensorflow /// public Tensor _clip_by_value(Tensor t, Tensor clip_value_min, Tensor clip_value_max, string name = null) => gen_math_ops._clip_by_value(t, clip_value_min, clip_value_max); + + /// + /// Clips tensor values to a specified min and max. + /// + /// + /// A Tensor. + /// + /// + /// A 0-D (scalar) Tensor, or a Tensor with the same shape + /// as t. The minimum value to clip by. + /// + /// + /// A 0-D (scalar) Tensor, or a Tensor with the same shape + /// as t. The maximum value to clip by. + /// + /// + /// If specified, the created operation in the graph will be this one, otherwise it will be named 'ClipByValue'. + /// + /// + /// A clipped Tensor with the same shape as input 't'. + /// The Operation can be fetched from the resulting Tensor, by fetching the Operation property from the result. + /// + /// + /// Given a tensor t, this operation returns a tensor of the same type and + /// shape as t with its values clipped to clip_value_min and clip_value_max. + /// Any values less than clip_value_min are set to clip_value_min. Any values + /// greater than clip_value_max are set to clip_value_max. + /// + public Tensor clip_by_value (Tensor t, Tensor clip_value_min, Tensor clip_value_max, string name = "ClipByValue") + => gen_ops.clip_by_value(t, clip_value_min, clip_value_max, name); public Tensor sub(Tensor a, Tensor b) => gen_math_ops.sub(a, b); diff --git a/src/TensorFlowNET.Core/APIs/tf.tensor.cs b/src/TensorFlowNET.Core/APIs/tf.tensor.cs index b553095e..2052de93 100644 --- a/src/TensorFlowNET.Core/APIs/tf.tensor.cs +++ b/src/TensorFlowNET.Core/APIs/tf.tensor.cs @@ -18,8 +18,8 @@ namespace Tensorflow { public partial class tensorflow { - public Tensor convert_to_tensor(object value, - string name = null) => ops.convert_to_tensor(value, name: name); + public Tensor convert_to_tensor(object value, TF_DataType dtype = TF_DataType.DtInvalid, string name = null, TF_DataType preferred_dtype = TF_DataType.DtInvalid) + => ops.convert_to_tensor(value, dtype, name, preferred_dtype); public Tensor strided_slice(Tensor input, Tensor begin, Tensor end, Tensor strides = null, int begin_mask = 0, diff --git a/src/TensorFlowNET.Core/Operations/Activation/gen_nn_ops.activations.cs b/src/TensorFlowNET.Core/Operations/Activation/gen_nn_ops.activations.cs index 80e1c305..788adda4 100644 --- a/src/TensorFlowNET.Core/Operations/Activation/gen_nn_ops.activations.cs +++ b/src/TensorFlowNET.Core/Operations/Activation/gen_nn_ops.activations.cs @@ -14,20 +14,192 @@ limitations under the License. ******************************************************************************/ +using System; +using static Tensorflow.Binding; + namespace Tensorflow.Operations.Activation { + public class sigmoid : IActivation + { + public Tensor Activate(Tensor x, string name = null) + { + return tf.sigmoid(x); + } + } + + public class tanh : IActivation + { + public Tensor Activate(Tensor x, string name = null) + { + return tf.tanh(x); + } + } + + public class leakyrelu : IActivation + { + private readonly float _alpha; + + public leakyrelu(float alpha = 0.3f) { + _alpha = alpha; + } + + public Tensor Activate(Tensor x, string name = null) + { + return nn_ops.leaky_relu(x, _alpha); + } + } + + public class elu : IActivation + { + private readonly float _alpha; + + public elu(float alpha = 0.1f) + { + _alpha = alpha; + } + + public Tensor Activate(Tensor x, string name = null) + { + var res = gen_ops.elu(x); + if (Math.Abs(_alpha - 0.1f) < 0.00001f) + { + return res; + } + + return array_ops.@where(x > 0, res, _alpha * res); + } + } + + public class softmax : IActivation + { + private readonly int _axis; + + /// Initializes a new instance of the class. + public softmax(int axis = -1) + { + _axis = axis; + } + + public Tensor Activate(Tensor x, string name = null) + { + return nn_ops.softmax(x, _axis); + } + } + + public class softplus : IActivation + { + public Tensor Activate(Tensor x, string name = null) + { + return gen_ops.softplus(x); + } + } + + public class softsign : IActivation + { + public Tensor Activate(Tensor x, string name = null) + { + return gen_ops.softsign(x); + } + } + + public class linear : IActivation + { + public Tensor Activate(Tensor x, string name = null) + { + return x; + } + } + + + public class exponential : IActivation + { + public Tensor Activate(Tensor x, string name = null) + { + return tf.exp(x, name: name); + } + } + + public class relu : IActivation { - public Tensor Activate(Tensor features, string name = null) + private readonly float _threshold; + private readonly float _alpha; + private readonly float? _maxValue; + + public relu(float threshold = 0f, float alpha = 0.2f, float? max_value = null) + { + _threshold = threshold; + _alpha = alpha; + _maxValue = max_value; + } + + public Tensor Activate(Tensor x, string name = null) { - OpDefLibrary _op_def_lib = new OpDefLibrary(); + //based on keras/backend.py + if (Math.Abs(_alpha) > 0.000001f) + { + if (!_maxValue.HasValue && Math.Abs(_threshold) < 0.0001) + { + return nn_ops.leaky_relu(x, _alpha); + } + } + + Tensor negative_part; + if (Math.Abs(_threshold) > 0.000001f) + { + negative_part = gen_ops.relu(-x + _threshold); + } else + { + negative_part = gen_ops.relu(-x + _threshold); + } + + if (Math.Abs(_threshold) > 0.000001f) + { + x = x * math_ops.cast(tf.greater(x, _threshold), TF_DataType.TF_FLOAT); + } else if (Math.Abs(_maxValue.Value - 6f) < 0.0001f) + { + x = gen_ops.relu6(x); + } else + { + x = gen_ops.relu(x); + } + + bool clip_max = _maxValue.HasValue; + if (clip_max) + { + Tensor maxval = constant_op.constant(_maxValue, x.dtype.as_base_dtype()); + var zero = constant_op.constant(0.0f, x.dtype.as_base_dtype()); + x = gen_ops.clip_by_value(x, zero, maxval); + } - var _op = _op_def_lib._apply_op_helper("Relu", name: name, args: new + if (Math.Abs(_alpha) > 0.00001) { - features - }); + var a = constant_op.constant(_alpha, x.dtype.as_base_dtype()); + x -= a * negative_part; + } - return _op.outputs[0]; + return x; + } + } + + public class selu : IActivation + { + public Tensor Activate(Tensor x, string name = null) + { + const float alpha = 1.6732632423543772848170429916717f; + const float scale = 1.0507009873554804934193349852946f; + return scale * new elu(alpha).Activate(x, name); + } + } + + public class hard_sigmoid : IActivation + { + public Tensor Activate(Tensor x, string name = null) + { + x = (0.2 * x) + 0.5; + var zero = tf.convert_to_tensor(0.0f, x.dtype.as_base_dtype()); + var one = tf.convert_to_tensor(1.0f, x.dtype.as_base_dtype()); + return tf.clip_by_value(x, zero, one); } } -} +} \ No newline at end of file