You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

NaiveBayesClassifier.cs 11 kB

6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195
  1. using System;
  2. using System.Collections.Generic;
  3. using System.Text;
  4. using Tensorflow;
  5. using NumSharp;
  6. using System.Linq;
  7. using static Tensorflow.Python;
  8. namespace TensorFlowNET.Examples
  9. {
  10. /// <summary>
  11. /// https://github.com/nicolov/naive_bayes_tensorflow
  12. /// </summary>
  13. public class NaiveBayesClassifier : IExample
  14. {
  15. public int Priority => 6;
  16. public bool Enabled { get; set; } = true;
  17. public string Name => "Naive Bayes Classifier";
  18. public bool ImportGraph { get; set; } = false;
  19. public Normal dist { get; set; }
  20. public bool Run()
  21. {
  22. var X = np.array(new float[][] { new float[] { 5.1f, 3.5f},new float[] { 4.9f, 3.0f },new float[] { 4.7f, 3.2f },
  23. new float[] { 4.6f, 3.1f },new float[] { 5.0f, 3.6f },new float[] { 5.4f, 3.9f },
  24. new float[] { 4.6f, 3.4f },new float[] { 5.0f, 3.4f },new float[] { 4.4f, 2.9f },
  25. new float[] { 4.9f, 3.1f },new float[] { 5.4f, 3.7f },new float[] {4.8f, 3.4f },
  26. new float[] {4.8f, 3.0f },new float[] {4.3f, 3.0f },new float[] {5.8f, 4.0f },
  27. new float[] {5.7f, 4.4f },new float[] {5.4f, 3.9f },new float[] {5.1f, 3.5f },
  28. new float[] {5.7f, 3.8f },new float[] {5.1f, 3.8f },new float[] {5.4f, 3.4f },
  29. new float[] {5.1f, 3.7f },new float[] {5.1f, 3.3f },new float[] {4.8f, 3.4f },
  30. new float[] {5.0f, 3.0f },new float[] {5.0f , 3.4f },new float[] {5.2f, 3.5f },
  31. new float[] {5.2f, 3.4f },new float[] {4.7f, 3.2f },new float[] {4.8f, 3.1f },
  32. new float[] {5.4f, 3.4f },new float[] {5.2f, 4.1f},new float[] {5.5f, 4.2f },
  33. new float[] {4.9f, 3.1f },new float[] {5.0f , 3.2f },new float[] {5.5f, 3.5f },
  34. new float[] {4.9f, 3.6f },new float[] {4.4f, 3.0f },new float[] {5.1f, 3.4f },
  35. new float[] {5.0f , 3.5f },new float[] {4.5f, 2.3f },new float[] {4.4f, 3.2f },
  36. new float[] {5.0f , 3.5f },new float[] {5.1f, 3.8f },new float[] {4.8f, 3.0f},
  37. new float[] {5.1f, 3.8f },new float[] {4.6f, 3.2f },new float[] { 5.3f, 3.7f },
  38. new float[] {5.0f , 3.3f },new float[] {7.0f , 3.2f },new float[] {6.4f, 3.2f },
  39. new float[] {6.9f, 3.1f },new float[] {5.5f, 2.3f },new float[] {6.5f, 2.8f },
  40. new float[] {5.7f, 2.8f },new float[] {6.3f, 3.3f },new float[] {4.9f, 2.4f },
  41. new float[] {6.6f, 2.9f },new float[] {5.2f, 2.7f },new float[] {5.0f , 2.0f },
  42. new float[] {5.9f, 3.0f },new float[] {6.0f , 2.2f },new float[] {6.1f, 2.9f },
  43. new float[] {5.6f, 2.9f },new float[] {6.7f, 3.1f },new float[] {5.6f, 3.0f },
  44. new float[] {5.8f, 2.7f },new float[] {6.2f, 2.2f },new float[] {5.6f, 2.5f },
  45. new float[] {5.9f, 3.0f},new float[] {6.1f, 2.8f},new float[] {6.3f, 2.5f},
  46. new float[] {6.1f, 2.8f},new float[] {6.4f, 2.9f},new float[] {6.6f, 3.0f },
  47. new float[] {6.8f, 2.8f},new float[] {6.7f, 3.0f },new float[] {6.0f , 2.9f},
  48. new float[] {5.7f, 2.6f},new float[] {5.5f, 2.4f},new float[] {5.5f, 2.4f},
  49. new float[] {5.8f, 2.7f},new float[] {6.0f , 2.7f},new float[] {5.4f, 3.0f},
  50. new float[] {6.0f , 3.4f},new float[] {6.7f, 3.1f},new float[] {6.3f, 2.3f},
  51. new float[] {5.6f, 3.0f },new float[] {5.5f, 2.5f},new float[] {5.5f, 2.6f},
  52. new float[] {6.1f, 3.0f },new float[] {5.8f, 2.6f},new float[] {5.0f, 2.3f},
  53. new float[] {5.6f, 2.7f},new float[] {5.7f, 3.0f },new float[] {5.7f, 2.9f},
  54. new float[] {6.2f, 2.9f},new float[] {5.1f, 2.5f},new float[] {5.7f, 2.8f},
  55. new float[] {6.3f, 3.3f},new float[] {5.8f, 2.7f},new float[] {7.1f, 3.0f },
  56. new float[] {6.3f, 2.9f},new float[] {6.5f, 3.0f },new float[] {7.6f, 3.0f },
  57. new float[] {4.9f, 2.5f},new float[] {7.3f, 2.9f},new float[] {6.7f, 2.5f},
  58. new float[] {7.2f, 3.6f},new float[] {6.5f, 3.2f},new float[] {6.4f, 2.7f},
  59. new float[] {6.8f, 3.00f },new float[] {5.7f, 2.5f},new float[] {5.8f, 2.8f},
  60. new float[] {6.4f, 3.2f},new float[] {6.5f, 3.0f },new float[] {7.7f, 3.8f},
  61. new float[] {7.7f, 2.6f},new float[] {6.0f , 2.2f},new float[] {6.9f, 3.2f},
  62. new float[] {5.6f, 2.8f},new float[] {7.7f, 2.8f},new float[] {6.3f, 2.7f},
  63. new float[] {6.7f, 3.3f},new float[] {7.2f, 3.2f},new float[] {6.2f, 2.8f},
  64. new float[] {6.1f, 3.0f },new float[] {6.4f, 2.8f},new float[] {7.2f, 3.0f },
  65. new float[] {7.4f, 2.8f},new float[] {7.9f, 3.8f},new float[] {6.4f, 2.8f},
  66. new float[] {6.3f, 2.8f},new float[] {6.1f, 2.6f},new float[] {7.7f, 3.0f },
  67. new float[] {6.3f, 3.4f},new float[] {6.4f, 3.1f},new float[] {6.0f, 3.0f},
  68. new float[] {6.9f, 3.1f},new float[] {6.7f, 3.1f},new float[] {6.9f, 3.1f},
  69. new float[] {5.8f, 2.7f},new float[] {6.8f, 3.2f},new float[] {6.7f, 3.3f},
  70. new float[] {6.7f, 3.0f },new float[] {6.3f, 2.5f},new float[] {6.5f, 3.0f },
  71. new float[] {6.2f, 3.4f},new float[] {5.9f, 3.0f }, new float[] {5.8f, 3.0f }});
  72. var y = np.array(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  73. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  74. 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  75. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  76. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  77. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  78. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2);
  79. fit(X, y);
  80. // Create a regular grid and classify each point
  81. float x_min = X.amin(0).Data<float>(0) - 0.5f;
  82. float y_min = X.amin(0).Data<float>(1) - 0.5f;
  83. float x_max = X.amax(0).Data<float>(0) + 0.5f;
  84. float y_max = X.amax(0).Data<float>(1) + 0.5f;
  85. var (xx, yy) = np.meshgrid(np.linspace(x_min, x_max, 30), np.linspace(y_min, y_max, 30));
  86. var s = tf.Session();
  87. if (xx.dtype == typeof(float))
  88. {
  89. var samples = np.hstack<float>(xx.ravel().reshape(xx.size,1), yy.ravel().reshape(yy.size,1));
  90. var Z = s.run(predict(samples));
  91. }
  92. return true;
  93. }
  94. public void fit(NDArray X, NDArray y)
  95. {
  96. var unique_y = y.unique<int>();
  97. var dic = new Dictionary<int, List<List<float>>>();
  98. // Init uy in dic
  99. foreach (int uy in unique_y.Data<int>())
  100. {
  101. dic.Add(uy, new List<List<float>>());
  102. }
  103. // Separate training points by class
  104. // Shape : nb_classes * nb_samples * nb_features
  105. int maxCount = 0;
  106. for (int i = 0; i < y.size; i++)
  107. {
  108. var curClass = y[i];
  109. var l = dic[curClass];
  110. var pair = new List<float>();
  111. pair.Add(X[i,0]);
  112. pair.Add(X[i, 1]);
  113. l.Add(pair);
  114. if (l.Count > maxCount)
  115. {
  116. maxCount = l.Count;
  117. }
  118. dic[curClass] = l;
  119. }
  120. float[,,] points = new float[dic.Count, maxCount, X.shape[1]];
  121. foreach (KeyValuePair<int, List<List<float>>> kv in dic)
  122. {
  123. int j = (int) kv.Key;
  124. for (int i = 0; i < maxCount; i++)
  125. {
  126. for (int k = 0; k < X.shape[1]; k++)
  127. {
  128. points[j, i, k] = kv.Value[i][k];
  129. }
  130. }
  131. }
  132. var points_by_class = np.array(points);
  133. // estimate mean and variance for each class / feature
  134. // shape : nb_classes * nb_features
  135. var cons = tf.constant(points_by_class);
  136. var tup = tf.nn.moments(cons, new int[]{1});
  137. var mean = tup.Item1;
  138. var variance = tup.Item2;
  139. // Create a 3x2 univariate normal distribution with the
  140. // Known mean and variance
  141. var dist = tf.distributions.Normal(mean, tf.sqrt(variance));
  142. this.dist = dist;
  143. }
  144. public Tensor predict (NDArray X)
  145. {
  146. if (dist == null)
  147. {
  148. throw new ArgumentNullException("cant not find the model (normal distribution)!");
  149. }
  150. int nb_classes = (int) dist.scale().shape[0];
  151. int nb_features = (int)dist.scale().shape[1];
  152. // Conditional probabilities log P(x|c) with shape
  153. // (nb_samples, nb_classes)
  154. var t1= ops.convert_to_tensor(X, TF_DataType.TF_FLOAT);
  155. var t2 = ops.convert_to_tensor(new int[] { 1, nb_classes });
  156. Tensor tile = tf.tile(t1, t2);
  157. var t3 = ops.convert_to_tensor(new int[] { -1, nb_classes, nb_features });
  158. Tensor r = tf.reshape(tile, t3);
  159. var cond_probs = tf.reduce_sum(dist.log_prob(r), 2);
  160. // uniform priors
  161. float[] tem = new float[nb_classes];
  162. for (int i = 0; i < tem.Length; i++)
  163. {
  164. tem[i] = 1.0f / nb_classes;
  165. }
  166. var priors = np.log(np.array<float>(tem));
  167. // posterior log probability, log P(c) + log P(x|c)
  168. var joint_likelihood = tf.add(ops.convert_to_tensor(priors, TF_DataType.TF_FLOAT), cond_probs);
  169. // normalize to get (log)-probabilities
  170. var norm_factor = tf.reduce_logsumexp(joint_likelihood, new int[] { 1 }, keepdims: true);
  171. var log_prob = joint_likelihood - norm_factor;
  172. // exp to get the actual probabilities
  173. return tf.exp(log_prob);
  174. }
  175. public void PrepareData()
  176. {
  177. }
  178. }
  179. }