|
|
@@ -76,7 +76,7 @@ namespace TensorFlowNET.Examples |
|
|
|
this.dist = dist; |
|
|
|
} |
|
|
|
|
|
|
|
public void predict (NDArray X) |
|
|
|
public Tensor predict (NDArray X) |
|
|
|
{ |
|
|
|
if (dist == null) |
|
|
|
{ |
|
|
@@ -96,13 +96,11 @@ namespace TensorFlowNET.Examples |
|
|
|
// posterior log probability, log P(c) + log P(x|c) |
|
|
|
var joint_likelihood = tf.add(new Tensor(priors), cond_probs); |
|
|
|
// normalize to get (log)-probabilities |
|
|
|
/* |
|
|
|
var norm_factor = tf.reduce_logsumexp(joint_likelihood, axis = 1, keep_dims = True) |
|
|
|
|
|
|
|
var norm_factor = tf.reduce_logsumexp(joint_likelihood, new int[] { 1 }, true); |
|
|
|
var log_prob = joint_likelihood - norm_factor; |
|
|
|
// exp to get the actual probabilities |
|
|
|
return tf.exp(log_prob) |
|
|
|
*/ |
|
|
|
throw new NotImplementedException(); |
|
|
|
return tf.exp(log_prob); |
|
|
|
} |
|
|
|
} |
|
|
|
} |