You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

LayersTest.cs 5.4 kB

4 years ago
5 years ago
4 years ago
4 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
3 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143
  1. using Microsoft.VisualStudio.TestTools.UnitTesting;
  2. using Tensorflow.NumPy;
  3. using System.Collections.Generic;
  4. using Tensorflow;
  5. using Tensorflow.Keras;
  6. using static Tensorflow.Binding;
  7. using static Tensorflow.KerasApi;
  8. using System.Linq;
  9. namespace TensorFlowNET.Keras.UnitTest
  10. {
  11. /// <summary>
  12. /// https://www.tensorflow.org/versions/r2.3/api_docs/python/tf/keras/layers
  13. /// </summary>
  14. [TestClass]
  15. public class LayersTest : EagerModeTestBase
  16. {
  17. // [TestMethod]
  18. public void InputLayer()
  19. {
  20. var model = keras.Sequential(new List<ILayer>
  21. {
  22. keras.layers.InputLayer(input_shape: 4),
  23. keras.layers.Dense(8)
  24. });
  25. model.compile(optimizer: keras.optimizers.RMSprop(0.001f));
  26. model.fit(np.zeros((10, 4)), np.ones((10, 8)));
  27. }
  28. [TestMethod]
  29. public void Sequential()
  30. {
  31. var model = keras.Sequential();
  32. model.add(keras.Input(shape: 16));
  33. }
  34. [TestMethod]
  35. public void Functional()
  36. {
  37. var layers = keras.layers;
  38. var inputs = keras.Input(shape: 784);
  39. Assert.AreEqual((-1, 784), inputs.shape);
  40. var dense = layers.Dense(64, activation: keras.activations.Relu);
  41. var x = dense.Apply(inputs);
  42. x = layers.Dense(64, activation: keras.activations.Relu).Apply(x);
  43. var outputs = layers.Dense(10).Apply(x);
  44. var model = keras.Model(inputs, outputs, name: "mnist_model");
  45. model.summary();
  46. }
  47. /// <summary>
  48. /// Custom layer test, used in Dueling DQN
  49. /// </summary>
  50. [TestMethod, Ignore]
  51. public void TensorFlowOpLayer()
  52. {
  53. var layers = keras.layers;
  54. var inputs = layers.Input(shape: 24);
  55. var x = layers.Dense(128, activation: "relu").Apply(inputs);
  56. var value = layers.Dense(24).Apply(x);
  57. var adv = layers.Dense(1).Apply(x);
  58. var mean = adv - tf.reduce_mean(adv, axis: 1, keepdims: true);
  59. adv = layers.Subtract().Apply((adv, mean));
  60. var outputs = layers.Add().Apply((value, adv));
  61. var model = keras.Model(inputs, outputs);
  62. model.compile(optimizer: keras.optimizers.RMSprop(0.001f),
  63. loss: keras.losses.MeanSquaredError(),
  64. metrics: new[] { "acc" });
  65. model.summary();
  66. Assert.AreEqual(model.Layers.Count, 8);
  67. var result = model.predict(tf.constant(np.arange(24).astype(np.float32)[np.newaxis, Slice.All]));
  68. Assert.AreEqual(result.shape, new Shape(1, 24));
  69. model.fit(np.arange(24).astype(np.float32)[np.newaxis, Slice.All], np.arange(24).astype(np.float32)[np.newaxis, Slice.All], verbose: 0);
  70. }
  71. /// <summary>
  72. /// https://www.tensorflow.org/api_docs/python/tf/keras/layers/Embedding
  73. /// </summary>
  74. [TestMethod]
  75. public void Embedding()
  76. {
  77. var model = keras.Sequential();
  78. var layer = keras.layers.Embedding(1000, 64, input_length: 10);
  79. model.add(layer);
  80. var input_array = np.random.randint(1000, size: (32, 10));
  81. model.compile("rmsprop", "mse", new[] { "accuracy" });
  82. var output_array = model.predict(input_array);
  83. Assert.AreEqual((32, 10, 64), output_array.shape);
  84. }
  85. /// <summary>
  86. /// https://www.tensorflow.org/api_docs/python/tf/keras/layers/Dense
  87. /// </summary>
  88. [TestMethod]
  89. public void Dense()
  90. {
  91. // Create a `Sequential` model and add a Dense layer as the first layer.
  92. var model = keras.Sequential();
  93. model.add(keras.Input(shape: 16));
  94. model.add(keras.layers.Dense(32, activation: keras.activations.Relu));
  95. // Now the model will take as input arrays of shape (None, 16)
  96. // and output arrays of shape (None, 32).
  97. // Note that after the first layer, you don't need to specify
  98. // the size of the input anymore:
  99. model.add(keras.layers.Dense(32));
  100. Assert.AreEqual((-1, 32), model.output_shape);
  101. }
  102. [TestMethod]
  103. [Ignore]
  104. public void SimpleRNN()
  105. {
  106. var inputs = np.random.rand(32, 10, 8).astype(np.float32);
  107. var simple_rnn = keras.layers.SimpleRNN(4);
  108. var output = simple_rnn.Apply(inputs);
  109. Assert.AreEqual((32, 4), output.shape);
  110. }
  111. [TestMethod]
  112. public void Resizing()
  113. {
  114. var inputs = tf.random.uniform((10, 32, 32, 3));
  115. var layer = keras.layers.preprocessing.Resizing(16, 16);
  116. var output = layer.Apply(inputs);
  117. Assert.AreEqual((10, 16, 16, 3), output.shape);
  118. }
  119. [TestMethod]
  120. public void LayerNormalization()
  121. {
  122. var inputs = tf.constant(np.arange(10).reshape((5, 2)) * 10, dtype: tf.float32);
  123. var layer = keras.layers.LayerNormalization(axis: 1);
  124. Tensor output = layer.Apply(inputs);
  125. Assert.AreEqual((5, 2), output.shape);
  126. Assert.IsTrue(output[0].numpy().Equals(new[] { -0.99998f, 0.99998f }));
  127. }
  128. }
  129. }