You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

binary_text_classification.py 3.2 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115
  1. 
  2. from __future__ import absolute_import, division, print_function
  3. import tensorflow as tf
  4. from tensorflow import keras
  5. import numpy as np
  6. print(tf.__version__)
  7. imdb = keras.datasets.imdb
  8. (train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000)
  9. print("Training entries: {}, labels: {}".format(len(train_data), len(train_labels)))
  10. print(train_data[0])
  11. len(train_data[0]), len(train_data[1])
  12. # A dictionary mapping words to an integer index
  13. word_index = imdb.get_word_index()
  14. # The first indices are reserved
  15. word_index = {k:(v+3) for k,v in word_index.items()}
  16. word_index["<PAD>"] = 0
  17. word_index["<START>"] = 1
  18. word_index["<UNK>"] = 2 # unknown
  19. word_index["<UNUSED>"] = 3
  20. reverse_word_index = dict([(value, key) for (key, value) in word_index.items()])
  21. def decode_review(text):
  22. return ' '.join([reverse_word_index.get(i, '?') for i in text])
  23. decode_review(train_data[0])
  24. train_data = keras.preprocessing.sequence.pad_sequences(train_data,
  25. value=word_index["<PAD>"],
  26. padding='post',
  27. maxlen=256)
  28. test_data = keras.preprocessing.sequence.pad_sequences(test_data,
  29. value=word_index["<PAD>"],
  30. padding='post',
  31. maxlen=256)
  32. print(train_data[0])
  33. # input shape is the vocabulary count used for the movie reviews (10,000 words)
  34. vocab_size = 10000
  35. model = keras.Sequential()
  36. model.add(keras.layers.Embedding(vocab_size, 16))
  37. model.add(keras.layers.GlobalAveragePooling1D())
  38. model.add(keras.layers.Dense(16, activation=tf.nn.relu))
  39. model.add(keras.layers.Dense(1, activation=tf.nn.sigmoid))
  40. model.summary()
  41. model.compile(optimizer='adam',
  42. loss='binary_crossentropy',
  43. metrics=['accuracy'])
  44. x_val = train_data[:10000]
  45. partial_x_train = train_data[10000:]
  46. y_val = train_labels[:10000]
  47. partial_y_train = train_labels[10000:]
  48. history = model.fit(partial_x_train,
  49. partial_y_train,
  50. epochs=20,
  51. batch_size=512,
  52. validation_data=(x_val, y_val),
  53. verbose=1)
  54. results = model.evaluate(test_data, test_labels)
  55. print(results)
  56. history_dict = history.history
  57. history_dict.keys()
  58. import matplotlib.pyplot as plt
  59. acc = history_dict['acc']
  60. val_acc = history_dict['val_acc']
  61. loss = history_dict['loss']
  62. val_loss = history_dict['val_loss']
  63. epochs = range(1, len(acc) + 1)
  64. # "bo" is for "blue dot"
  65. plt.plot(epochs, loss, 'bo', label='Training loss')
  66. # b is for "solid blue line"
  67. plt.plot(epochs, val_loss, 'b', label='Validation loss')
  68. plt.title('Training and validation loss')
  69. plt.xlabel('Epochs')
  70. plt.ylabel('Loss')
  71. plt.legend()
  72. plt.show()
  73. plt.clf() # clear figure
  74. plt.plot(epochs, acc, 'bo', label='Training acc')
  75. plt.plot(epochs, val_acc, 'b', label='Validation acc')
  76. plt.title('Training and validation accuracy')
  77. plt.xlabel('Epochs')
  78. plt.ylabel('Accuracy')
  79. plt.legend()
  80. plt.show()