|
|
@@ -0,0 +1,133 @@ |
|
|
|
|
|
|
|
from __future__ import absolute_import, division, print_function |
|
|
|
|
|
|
|
import tensorflow as tf |
|
|
|
from tensorflow import keras |
|
|
|
|
|
|
|
import numpy as np |
|
|
|
|
|
|
|
print(tf.__version__) |
|
|
|
|
|
|
|
imdb = keras.datasets.imdb |
|
|
|
|
|
|
|
(train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000) |
|
|
|
|
|
|
|
print("Training entries: {}, labels: {}".format(len(train_data), len(train_labels))) |
|
|
|
print(train_data[0]) |
|
|
|
len(train_data[0]), len(train_data[1]) |
|
|
|
|
|
|
|
# A dictionary mapping words to an integer index |
|
|
|
word_index = imdb.get_word_index() |
|
|
|
|
|
|
|
# The first indices are reserved |
|
|
|
word_index = {k:(v+3) for k,v in word_index.items()} |
|
|
|
word_index["<PAD>"] = 0 |
|
|
|
word_index["<START>"] = 1 |
|
|
|
word_index["<UNK>"] = 2 # unknown |
|
|
|
word_index["<UNUSED>"] = 3 |
|
|
|
|
|
|
|
reverse_word_index = dict([(value, key) for (key, value) in word_index.items()]) |
|
|
|
|
|
|
|
def decode_review(text): |
|
|
|
return ' '.join([reverse_word_index.get(i, '?') for i in text]) |
|
|
|
|
|
|
|
decode_review(train_data[0]) |
|
|
|
|
|
|
|
|
|
|
|
train_data = keras.preprocessing.sequence.pad_sequences(train_data, |
|
|
|
value=word_index["<PAD>"], |
|
|
|
padding='post', |
|
|
|
maxlen=256) |
|
|
|
|
|
|
|
test_data = keras.preprocessing.sequence.pad_sequences(test_data, |
|
|
|
value=word_index["<PAD>"], |
|
|
|
padding='post', |
|
|
|
maxlen=256) |
|
|
|
|
|
|
|
|
|
|
|
print(train_data[0]) |
|
|
|
|
|
|
|
# input shape is the vocabulary count used for the movie reviews (10,000 words) |
|
|
|
vocab_size = 10000 |
|
|
|
|
|
|
|
model = keras.Sequential() |
|
|
|
model.add(keras.layers.Embedding(vocab_size, 16)) |
|
|
|
model.add(keras.layers.GlobalAveragePooling1D()) |
|
|
|
model.add(keras.layers.Dense(16, activation=tf.nn.relu)) |
|
|
|
model.add(keras.layers.Dense(1, activation=tf.nn.sigmoid)) |
|
|
|
|
|
|
|
model.summary() |
|
|
|
|
|
|
|
model.compile(optimizer='adam', |
|
|
|
loss='binary_crossentropy', |
|
|
|
metrics=['accuracy']) |
|
|
|
|
|
|
|
|
|
|
|
x_val = train_data[:10000] |
|
|
|
partial_x_train = train_data[10000:] |
|
|
|
|
|
|
|
y_val = train_labels[:10000] |
|
|
|
partial_y_train = train_labels[10000:] |
|
|
|
|
|
|
|
history = model.fit(partial_x_train, |
|
|
|
partial_y_train, |
|
|
|
epochs=40, |
|
|
|
batch_size=512, |
|
|
|
validation_data=(x_val, y_val), |
|
|
|
verbose=1) |
|
|
|
|
|
|
|
results = model.evaluate(test_data, test_labels) |
|
|
|
|
|
|
|
# serialize model to JSON |
|
|
|
model_json = model.to_json() |
|
|
|
with open("model.json", "w") as json_file: |
|
|
|
json_file.write(model_json) |
|
|
|
# serialize weights to HDF5 |
|
|
|
model.save_weights("model.h5") |
|
|
|
print("Saved model to disk") |
|
|
|
|
|
|
|
# load json and create model |
|
|
|
json_file = open('model.json', 'r') |
|
|
|
loaded_model_json = json_file.read() |
|
|
|
json_file.close() |
|
|
|
loaded_model = model_from_json(loaded_model_json) |
|
|
|
# load weights into new model |
|
|
|
loaded_model.load_weights("model.h5") |
|
|
|
print("Loaded model from disk") |
|
|
|
|
|
|
|
print(results) |
|
|
|
|
|
|
|
history_dict = history.history |
|
|
|
history_dict.keys() |
|
|
|
|
|
|
|
import matplotlib.pyplot as plt |
|
|
|
|
|
|
|
acc = history_dict['acc'] |
|
|
|
val_acc = history_dict['val_acc'] |
|
|
|
loss = history_dict['loss'] |
|
|
|
val_loss = history_dict['val_loss'] |
|
|
|
|
|
|
|
epochs = range(1, len(acc) + 1) |
|
|
|
|
|
|
|
# "bo" is for "blue dot" |
|
|
|
plt.plot(epochs, loss, 'bo', label='Training loss') |
|
|
|
# b is for "solid blue line" |
|
|
|
plt.plot(epochs, val_loss, 'b', label='Validation loss') |
|
|
|
plt.title('Training and validation loss') |
|
|
|
plt.xlabel('Epochs') |
|
|
|
plt.ylabel('Loss') |
|
|
|
plt.legend() |
|
|
|
|
|
|
|
plt.show() |
|
|
|
|
|
|
|
|
|
|
|
plt.clf() # clear figure |
|
|
|
|
|
|
|
plt.plot(epochs, acc, 'bo', label='Training acc') |
|
|
|
plt.plot(epochs, val_acc, 'b', label='Validation acc') |
|
|
|
plt.title('Training and validation accuracy') |
|
|
|
plt.xlabel('Epochs') |
|
|
|
plt.ylabel('Accuracy') |
|
|
|
plt.legend() |
|
|
|
|
|
|
|
plt.show() |