Browse Source

tensorflow 1.13rc2

ImageRecognition in prograss.
tags/v0.8.0
haiping008 6 years ago
parent
commit
be89140bb0
7 changed files with 194 additions and 4 deletions
  1. +21
    -3
      src/TensorFlowNET.Core/Tensors/Tensor.Creation.cs
  2. +1
    -0
      src/TensorFlowNET.Core/Tensors/Tensor.cs
  3. +1
    -1
      src/TensorFlowNET.Core/Tensors/c_api.tensor.cs
  4. BIN
      src/TensorFlowNET.Core/runtimes/win-x64/native/tensorflow.dll
  5. +7
    -0
      src/TensorFlowNET.Core/tf.cs
  6. +31
    -0
      test/TensorFlowNET.Examples/ImageRecognition.cs
  7. +133
    -0
      test/TensorFlowNET.Examples/python/basic_text_classification.py

+ 21
- 3
src/TensorFlowNET.Core/Tensors/Tensor.Creation.cs View File

@@ -54,9 +54,27 @@ namespace Tensorflow
case "Double":
Marshal.Copy(nd.Data<double>(), 0, dotHandle, nd.size);
break;
case "Byte":
var bb = nd.Data<byte>();
var bytes = Marshal.AllocHGlobal(bb.Length) ;
ulong bytes_len = c_api.TF_StringEncodedSize((ulong)bb.Length);
var dataTypeByte = ToTFDataType(nd.dtype);
// shape
var dims2 = nd.shape.Select(x => (long)x).ToArray();

var tfHandle2 = c_api.TF_AllocateTensor(dataTypeByte,
dims2,
nd.ndim,
bytes_len + sizeof(Int64));

dotHandle = c_api.TF_TensorData(tfHandle2);
Marshal.WriteInt64(dotHandle, 0);
c_api.TF_StringEncode(bytes, (ulong)bb.Length, dotHandle + sizeof(Int64), bytes_len, status);
return tfHandle2;
case "String":
var str = nd.Data<string>()[0];
ulong dst_len = c_api.TF_StringEncodedSize((ulong)str.Length);
string ss = nd.Data<string>()[0];
var str = Marshal.StringToHGlobalAnsi(ss);
ulong dst_len = c_api.TF_StringEncodedSize((ulong)ss.Length);
var dataType1 = ToTFDataType(nd.dtype);
// shape
var dims1 = nd.shape.Select(x => (long)x).ToArray();
@@ -68,7 +86,7 @@ namespace Tensorflow

dotHandle = c_api.TF_TensorData(tfHandle1);
Marshal.WriteInt64(dotHandle, 0);
c_api.TF_StringEncode(str, (ulong)str.Length, dotHandle + sizeof(Int64), dst_len, status);
c_api.TF_StringEncode(str, (ulong)ss.Length, dotHandle + sizeof(Int64), dst_len, status);
return tfHandle1;
default:
throw new NotImplementedException("Marshal.Copy failed.");


+ 1
- 0
src/TensorFlowNET.Core/Tensors/Tensor.cs View File

@@ -164,6 +164,7 @@ namespace Tensorflow
return TF_DataType.TF_FLOAT;
case "Double":
return TF_DataType.TF_DOUBLE;
case "Byte":
case "String":
return TF_DataType.TF_STRING;
default:


+ 1
- 1
src/TensorFlowNET.Core/Tensors/c_api.tensor.cs View File

@@ -120,7 +120,7 @@ namespace Tensorflow
/// <param name="status">TF_Status*</param>
/// <returns>On success returns the size in bytes of the encoded string.</returns>
[DllImport(TensorFlowLibName)]
public static extern ulong TF_StringEncode(string src, ulong src_len, IntPtr dst, ulong dst_len, IntPtr status);
public static extern ulong TF_StringEncode(IntPtr src, ulong src_len, IntPtr dst, ulong dst_len, IntPtr status);

/// <summary>
/// Decode a string encoded using TF_StringEncode.


BIN
src/TensorFlowNET.Core/runtimes/win-x64/native/tensorflow.dll View File


+ 7
- 0
src/TensorFlowNET.Core/tf.cs View File

@@ -57,5 +57,12 @@ namespace Tensorflow
defaultSession = new Session();
return defaultSession;
}

public static Session Session(Graph graph)
{
g = graph;
defaultSession = new Session();
return defaultSession;
}
}
}

+ 31
- 0
test/TensorFlowNET.Examples/ImageRecognition.cs View File

@@ -0,0 +1,31 @@
using System;
using System.Collections.Generic;
using System.IO;
using System.IO.Compression;
using System.Linq;
using System.Net;
using System.Text;
using Tensorflow;

namespace TensorFlowNET.Examples
{
public class ImageRecognition : Python, IExample
{
public void Run()
{
var graph = new Graph();
// 从文件加载序列化的GraphDef
//导入GraphDef
graph.Import("tmp/tensorflow_inception_graph.pb");
with<Session>(tf.Session(graph), sess =>
{
var labels = File.ReadAllLines("tmp/imagenet_comp_graph_label_strings.txt");
var files = Directory.GetFiles("img");
foreach(var file in files)
{
var tensor = new Tensor(File.ReadAllBytes(file));
}
});
}
}
}

+ 133
- 0
test/TensorFlowNET.Examples/python/basic_text_classification.py View File

@@ -0,0 +1,133 @@

from __future__ import absolute_import, division, print_function

import tensorflow as tf
from tensorflow import keras

import numpy as np

print(tf.__version__)

imdb = keras.datasets.imdb

(train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000)

print("Training entries: {}, labels: {}".format(len(train_data), len(train_labels)))
print(train_data[0])
len(train_data[0]), len(train_data[1])

# A dictionary mapping words to an integer index
word_index = imdb.get_word_index()

# The first indices are reserved
word_index = {k:(v+3) for k,v in word_index.items()}
word_index["<PAD>"] = 0
word_index["<START>"] = 1
word_index["<UNK>"] = 2 # unknown
word_index["<UNUSED>"] = 3

reverse_word_index = dict([(value, key) for (key, value) in word_index.items()])

def decode_review(text):
return ' '.join([reverse_word_index.get(i, '?') for i in text])

decode_review(train_data[0])


train_data = keras.preprocessing.sequence.pad_sequences(train_data,
value=word_index["<PAD>"],
padding='post',
maxlen=256)

test_data = keras.preprocessing.sequence.pad_sequences(test_data,
value=word_index["<PAD>"],
padding='post',
maxlen=256)


print(train_data[0])

# input shape is the vocabulary count used for the movie reviews (10,000 words)
vocab_size = 10000

model = keras.Sequential()
model.add(keras.layers.Embedding(vocab_size, 16))
model.add(keras.layers.GlobalAveragePooling1D())
model.add(keras.layers.Dense(16, activation=tf.nn.relu))
model.add(keras.layers.Dense(1, activation=tf.nn.sigmoid))

model.summary()

model.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy'])


x_val = train_data[:10000]
partial_x_train = train_data[10000:]

y_val = train_labels[:10000]
partial_y_train = train_labels[10000:]

history = model.fit(partial_x_train,
partial_y_train,
epochs=40,
batch_size=512,
validation_data=(x_val, y_val),
verbose=1)

results = model.evaluate(test_data, test_labels)

# serialize model to JSON
model_json = model.to_json()
with open("model.json", "w") as json_file:
json_file.write(model_json)
# serialize weights to HDF5
model.save_weights("model.h5")
print("Saved model to disk")

# load json and create model
json_file = open('model.json', 'r')
loaded_model_json = json_file.read()
json_file.close()
loaded_model = model_from_json(loaded_model_json)
# load weights into new model
loaded_model.load_weights("model.h5")
print("Loaded model from disk")

print(results)

history_dict = history.history
history_dict.keys()

import matplotlib.pyplot as plt

acc = history_dict['acc']
val_acc = history_dict['val_acc']
loss = history_dict['loss']
val_loss = history_dict['val_loss']

epochs = range(1, len(acc) + 1)

# "bo" is for "blue dot"
plt.plot(epochs, loss, 'bo', label='Training loss')
# b is for "solid blue line"
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()

plt.show()


plt.clf() # clear figure

plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()

plt.show()

Loading…
Cancel
Save