You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

MetricsTest.cs 3.5 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102
  1. using Microsoft.VisualStudio.TestTools.UnitTesting;
  2. using System;
  3. using System.Collections.Generic;
  4. using System.Linq;
  5. using System.Text;
  6. using System.Threading.Tasks;
  7. using Tensorflow;
  8. using Tensorflow.NumPy;
  9. using static Tensorflow.Binding;
  10. using static Tensorflow.KerasApi;
  11. namespace TensorFlowNET.Keras.UnitTest;
  12. [TestClass]
  13. public class MetricsTest : EagerModeTestBase
  14. {
  15. /// <summary>
  16. /// https://www.tensorflow.org/api_docs/python/tf/keras/metrics/TopKCategoricalAccuracy
  17. /// </summary>
  18. [TestMethod]
  19. public void TopKCategoricalAccuracy()
  20. {
  21. var y_true = np.array(new[,] { { 0, 0, 1 }, { 0, 1, 0 } });
  22. var y_pred = np.array(new[,] { { 0.1f, 0.9f, 0.8f }, { 0.05f, 0.95f, 0f } });
  23. var m = tf.keras.metrics.TopKCategoricalAccuracy(k: 1);
  24. m.update_state(y_true, y_pred);
  25. var r = m.result().numpy();
  26. Assert.AreEqual(r, 0.5f);
  27. m.reset_states();
  28. var weights = np.array(new[] { 0.7f, 0.3f });
  29. m.update_state(y_true, y_pred, sample_weight: weights);
  30. r = m.result().numpy();
  31. Assert.AreEqual(r, 0.3f);
  32. }
  33. /// <summary>
  34. /// https://www.tensorflow.org/api_docs/python/tf/keras/metrics/top_k_categorical_accuracy
  35. /// </summary>
  36. [TestMethod]
  37. public void top_k_categorical_accuracy()
  38. {
  39. var y_true = np.array(new[,] { { 0, 0, 1 }, { 0, 1, 0 } });
  40. var y_pred = np.array(new[,] { { 0.1f, 0.9f, 0.8f }, { 0.05f, 0.95f, 0f } });
  41. var m = tf.keras.metrics.top_k_categorical_accuracy(y_true, y_pred, k: 3);
  42. Assert.AreEqual(m.numpy(), new[] { 1f, 1f });
  43. }
  44. /// <summary>
  45. /// https://www.tensorflow.org/api_docs/python/tf/keras/metrics/Precision
  46. /// </summary>
  47. [TestMethod]
  48. public void Precision()
  49. {
  50. var y_true = np.array(new[] { 0, 1, 1, 1 });
  51. var y_pred = np.array(new[] { 1, 0, 1, 1 });
  52. var m = tf.keras.metrics.Precision();
  53. m.update_state(y_true, y_pred);
  54. var r = m.result().numpy();
  55. Assert.AreEqual(r, 0.6666667f);
  56. m.reset_states();
  57. var weights = np.array(new[] { 0f, 0f, 1f, 0f });
  58. m.update_state(y_true, y_pred, sample_weight: weights);
  59. r = m.result().numpy();
  60. Assert.AreEqual(r, 1f);
  61. // With top_k=2, it will calculate precision over y_true[:2]
  62. // and y_pred[:2]
  63. m = tf.keras.metrics.Precision(top_k: 2);
  64. m.update_state(np.array(new[] { 0, 0, 1, 1 }), np.array(new[] { 1, 1, 1, 1 }));
  65. r = m.result().numpy();
  66. Assert.AreEqual(r, 0f);
  67. // With top_k=4, it will calculate precision over y_true[:4]
  68. // and y_pred[:4]
  69. m = tf.keras.metrics.Precision(top_k: 4);
  70. m.update_state(np.array(new[] { 0, 0, 1, 1 }), np.array(new[] { 1, 1, 1, 1 }));
  71. r = m.result().numpy();
  72. Assert.AreEqual(r, 0.5f);
  73. }
  74. /// <summary>
  75. /// https://www.tensorflow.org/api_docs/python/tf/keras/metrics/Recall
  76. /// </summary>
  77. [TestMethod]
  78. public void Recall()
  79. {
  80. var y_true = np.array(new[] { 0, 1, 1, 1 });
  81. var y_pred = np.array(new[] { 1, 0, 1, 1 });
  82. var m = tf.keras.metrics.Recall();
  83. m.update_state(y_true, y_pred);
  84. var r = m.result().numpy();
  85. Assert.AreEqual(r, 0.6666667f);
  86. m.reset_states();
  87. var weights = np.array(new[] { 0f, 0f, 1f, 0f });
  88. m.update_state(y_true, y_pred, sample_weight: weights);
  89. r = m.result().numpy();
  90. Assert.AreEqual(r, 1f);
  91. }
  92. }