You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

CApiGradientsTest.cs 11 kB

6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
6 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283
  1. using Microsoft.VisualStudio.TestTools.UnitTesting;
  2. using NumSharp.Core;
  3. using System;
  4. using System.Collections.Generic;
  5. using System.Linq;
  6. using System.Runtime.InteropServices;
  7. using System.Text;
  8. using Tensorflow;
  9. using Buffer = Tensorflow.Buffer;
  10. namespace TensorFlowNET.UnitTest
  11. {
  12. /// <summary>
  13. /// tensorflow\c\c_api_test.cc
  14. /// `class CApiGradientsTest`
  15. /// </summary>
  16. [TestClass]
  17. public class CApiGradientsTest : CApiTest, IDisposable
  18. {
  19. private Graph graph_ = new Graph();
  20. private Graph expected_graph_ = new Graph();
  21. private Status s_ = new Status();
  22. private void TestGradientsSuccess(bool grad_inputs_provided)
  23. {
  24. var inputs = new TF_Output[2];
  25. var outputs = new TF_Output[1];
  26. var grad_outputs = new TF_Output[2];
  27. var expected_grad_outputs = new TF_Output[2];
  28. BuildSuccessGraph(inputs, outputs);
  29. BuildExpectedGraph(grad_inputs_provided, expected_grad_outputs);
  30. AddGradients(grad_inputs_provided, string.Empty, inputs, 2, outputs, 1,
  31. grad_outputs);
  32. // EXPECT_EQ(TF_OK, TF_GetCode(s_));
  33. // Compare that the graphs match.
  34. GraphDef expected_gdef;
  35. GraphDef gdef;
  36. EXPECT_TRUE(GetGraphDef(expected_graph_, out expected_gdef));
  37. EXPECT_TRUE(GetGraphDef(graph_, out gdef));
  38. //TF_EXPECT_GRAPH_EQ(expected_gdef, gdef);
  39. // Compare that the output of the gradients of both graphs match.
  40. RunGraphsAndCompareOutputs(grad_outputs, expected_grad_outputs);
  41. }
  42. private bool GetGraphDef(Graph graph, out GraphDef graph_def)
  43. {
  44. graph_def = null;
  45. var s = new Status();
  46. var buffer = new Buffer();
  47. c_api.TF_GraphToGraphDef(graph, buffer, s);
  48. bool ret = TF_GetCode(s) == TF_OK;
  49. EXPECT_EQ(TF_OK, TF_GetCode(s));
  50. if (ret) graph_def = GraphDef.Parser.ParseFrom(buffer.Data);
  51. buffer.Dispose();
  52. s.Dispose();
  53. return ret;
  54. }
  55. private void RunGraphsAndCompareOutputs(TF_Output[] grad_outputs, TF_Output[] expected_grad_outputs)
  56. {
  57. var csession = new CSession(graph_, s_);
  58. var expected_csession = new CSession(expected_graph_, s_);
  59. var grad_outputs_vec = new List<IntPtr>();
  60. grad_outputs_vec.AddRange(grad_outputs.Select(x => x.oper));
  61. csession.SetOutputs(grad_outputs_vec);
  62. csession.Run(s_);
  63. ASSERT_EQ(TF_OK, TF_GetCode(s_));
  64. var out0 = csession.output_tensor(0);
  65. var out1 = csession.output_tensor(1);
  66. var expected_grad_outputs_vec = new List<IntPtr>();
  67. expected_grad_outputs_vec.AddRange(expected_grad_outputs.Select(x => x.oper));
  68. expected_csession.SetOutputs(expected_grad_outputs_vec);
  69. expected_csession.Run(s_);
  70. ASSERT_EQ(TF_OK, TF_GetCode(s_));
  71. var expected_out0 = expected_csession.output_tensor(0);
  72. var expected_out1 = expected_csession.output_tensor(1);
  73. //CompareTensors(out0, expected_out0);
  74. //CompareTensors(out1, expected_out1);
  75. }
  76. /*void TestGradientsError(bool grad_inputs_provided)
  77. {
  78. var inputs = new TF_Output[1];
  79. var outputs = new TF_Output[1];
  80. var grad_outputs = new TF_Output[1];
  81. BuildErrorGraph(inputs, outputs);
  82. AddGradients(grad_inputs_provided, nullptr, inputs, 1, outputs, 1,
  83. grad_outputs);
  84. string expected_msg =
  85. "No gradient defined for op: TestOpWithNoGradient. Please see "
  86. "https://www.tensorflow.org/code/"
  87. "tensorflow/cc/gradients/README.md"
  88. " for instructions on how to add C++ gradients.";
  89. EXPECT_EQ(expected_msg, TF_Message(s_));
  90. }*/
  91. private void AddGradients(bool grad_inputs_provided, string prefix, TF_Output[] inputs, int ninputs,
  92. TF_Output[] outputs, int noutputs, TF_Output[] grad_outputs)
  93. {
  94. if (grad_inputs_provided)
  95. {
  96. var grad_inputs = new TF_Output[1];
  97. float[] grad_inputs_val = { 1.0f, 1.0f, 1.0f, 1.0f };
  98. var grad_inputs_op = FloatConst2x2(graph_, s_, grad_inputs_val, "GradInputs");
  99. grad_inputs[0] = new TF_Output(grad_inputs_op, 0);
  100. c_api.TF_AddGradientsWithPrefix(graph_, prefix, outputs, noutputs, inputs,
  101. ninputs, grad_inputs, s_, grad_outputs);
  102. }
  103. else
  104. {
  105. c_api.TF_AddGradientsWithPrefix(graph_, prefix, outputs, noutputs, inputs,
  106. ninputs, null, s_, grad_outputs);
  107. }
  108. }
  109. private void BuildSuccessGraph(TF_Output[] inputs, TF_Output[] outputs)
  110. {
  111. // Construct the following graph:
  112. // |
  113. // z|
  114. // |
  115. // MatMul
  116. // / \
  117. // ^ ^
  118. // | |
  119. // x| y|
  120. // | |
  121. // | |
  122. // Const_0 Const_1
  123. //
  124. var const0_val = new float[] { 1.0f, 2.0f, 3.0f, 4.0f };
  125. var const1_val = new float[] { 1.0f, 0.0f, 0.0f, 1.0f };
  126. var const0 = FloatConst2x2(graph_, s_, const0_val, "Const_0");
  127. var const1 = FloatConst2x2(graph_, s_, const1_val, "Const_1");
  128. var matmul = MatMul(graph_, s_, const0, const1, "MatMul");
  129. inputs[0] = new TF_Output(const0, 0);
  130. inputs[1] = new TF_Output(const1, 0);
  131. outputs[0] = new TF_Output(matmul, 0);
  132. EXPECT_EQ(TF_OK, TF_GetCode(s_));
  133. }
  134. private void BuildExpectedGraph(bool grad_inputs_provided, TF_Output[] expected_grad_outputs)
  135. {
  136. // The expected graph looks like this if grad_inputs_provided.
  137. // If grad_inputs_provided is false, Const_0 will be a OnesLike op.
  138. // ^ ^
  139. // dy| dx| // MatMul Gradient Graph
  140. // | |
  141. // MatMul_2 MatMul_1
  142. // ^ ^ ^ ^
  143. // | |----------| |
  144. // | ^ |
  145. // | dz| |
  146. // | | |
  147. // | Const_3 |
  148. // | |
  149. // | ^ |
  150. // | z| | // MatMul Forward Graph
  151. // | | |
  152. // | MatMul |
  153. // | / \ |
  154. // | ^ ^ |
  155. // | | | |
  156. // |---x| y|----|
  157. // | |
  158. // | |
  159. // Const_0 Const_1
  160. //
  161. float[] const0_val = { 1.0f, 2.0f, 3.0f, 4.0f };
  162. float[] const1_val = { 1.0f, 0.0f, 0.0f, 1.0f };
  163. var const0 = FloatConst2x2(expected_graph_, s_, const0_val, "Const_0");
  164. var const1 = FloatConst2x2(expected_graph_, s_, const1_val, "Const_1");
  165. var matmul = MatMul(expected_graph_, s_, const0, const1, "MatMul");
  166. Operation const3;
  167. if (grad_inputs_provided)
  168. {
  169. float[] const3_val = { 1.0f, 1.0f, 1.0f, 1.0f };
  170. const3 = FloatConst2x2(expected_graph_, s_, const3_val, "GradInputs");
  171. }
  172. else
  173. {
  174. const3 = OnesLike(expected_graph_, s_, matmul, "gradients/OnesLike");
  175. }
  176. var matmul1 = MatMul(expected_graph_, s_, const3, const1,
  177. "gradients/MatMul", false, true);
  178. var matmul2 = MatMul(expected_graph_, s_, const0, const3,
  179. "gradients/MatMul_1", true, false);
  180. expected_grad_outputs[0] = new TF_Output(matmul1, 0);
  181. expected_grad_outputs[1] = new TF_Output( matmul2, 0);
  182. }
  183. private Operation OnesLike(Graph graph, Status s, Operation input, string name)
  184. {
  185. var desc = TF_NewOperation(graph, "OnesLike", name);
  186. TF_AddInput(desc, new TF_Output(input, 0));
  187. var op = TF_FinishOperation(desc, s);
  188. EXPECT_EQ(TF_OK, TF_GetCode(s));
  189. return op;
  190. }
  191. private Operation FloatConst2x2(Graph graph, Status s, float[] values, string name)
  192. {
  193. var tensor = FloatTensor2x2(values);
  194. var desc = TF_NewOperation(graph, "Const", name);
  195. TF_SetAttrTensor(desc, "value", tensor, s);
  196. if (TF_GetCode(s) != TF_OK) return IntPtr.Zero;
  197. TF_SetAttrType(desc, "dtype", TF_FLOAT);
  198. var op = TF_FinishOperation(desc, s);
  199. EXPECT_EQ(TF_OK, TF_GetCode(s));
  200. return op;
  201. }
  202. private Tensor FloatTensor2x2(float[] values)
  203. {
  204. //long[] dims = { 2, 2 };
  205. //Tensor t = c_api.TF_AllocateTensor(TF_FLOAT, dims, 2, sizeof(float) * 4);
  206. //Marshal.Copy(values, 0, t, 4);
  207. Tensor t = new Tensor(new NDArray(values).reshape(2, 2));
  208. return t;
  209. }
  210. private Operation MatMul(Graph graph, Status s, Operation l, Operation r, string name,
  211. bool transpose_a = false, bool transpose_b = false)
  212. {
  213. var desc = TF_NewOperation(graph, "MatMul", name);
  214. if (transpose_a)
  215. {
  216. TF_SetAttrBool(desc, "transpose_a", true);
  217. }
  218. if (transpose_b)
  219. {
  220. TF_SetAttrBool(desc, "transpose_b", true);
  221. }
  222. TF_AddInput(desc, new TF_Output(l, 0));
  223. TF_AddInput(desc, new TF_Output(r, 0));
  224. var op = TF_FinishOperation(desc, s);
  225. EXPECT_EQ(TF_OK, TF_GetCode(s));
  226. return op;
  227. }
  228. [TestMethod]
  229. public void Gradients_GradInputs()
  230. {
  231. TestGradientsSuccess(true);
  232. }
  233. [TestMethod]
  234. public void Gradients_NoGradInputs()
  235. {
  236. TestGradientsSuccess(false);
  237. }
  238. [TestMethod]
  239. public void OpWithNoGradientRegistered_GradInputs()
  240. {
  241. //TestGradientsError(true);
  242. }
  243. [TestMethod]
  244. public void OpWithNoGradientRegistered_NoGradInputs()
  245. {
  246. //TestGradientsError(false);
  247. }
  248. public void Dispose()
  249. {
  250. graph_.Dispose();
  251. expected_graph_.Dispose();
  252. s_.Dispose();
  253. }
  254. }
  255. }

tensorflow框架的.NET版本,提供了丰富的特性和API,可以借此很方便地在.NET平台下搭建深度学习训练与推理流程。