using Microsoft.VisualStudio.TestTools.UnitTesting;
using NumSharp.Core;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Runtime.InteropServices;
using System.Text;
using Tensorflow;
using Buffer = Tensorflow.Buffer;
namespace TensorFlowNET.UnitTest
{
///
/// tensorflow\c\c_api_test.cc
/// `class CApiGradientsTest`
///
[TestClass]
public class CApiGradientsTest : CApiTest, IDisposable
{
private Graph graph_ = new Graph();
private Graph expected_graph_ = new Graph();
private Status s_ = new Status();
private void TestGradientsSuccess(bool grad_inputs_provided)
{
var inputs = new TF_Output[2];
var outputs = new TF_Output[1];
var grad_outputs = new TF_Output[2];
var expected_grad_outputs = new TF_Output[2];
BuildSuccessGraph(inputs, outputs);
BuildExpectedGraph(grad_inputs_provided, expected_grad_outputs);
AddGradients(grad_inputs_provided, string.Empty, inputs, 2, outputs, 1,
grad_outputs);
// EXPECT_EQ(TF_OK, TF_GetCode(s_));
// Compare that the graphs match.
GraphDef expected_gdef;
GraphDef gdef;
EXPECT_TRUE(GetGraphDef(expected_graph_, out expected_gdef));
EXPECT_TRUE(GetGraphDef(graph_, out gdef));
//TF_EXPECT_GRAPH_EQ(expected_gdef, gdef);
// Compare that the output of the gradients of both graphs match.
RunGraphsAndCompareOutputs(grad_outputs, expected_grad_outputs);
}
private bool GetGraphDef(Graph graph, out GraphDef graph_def)
{
graph_def = null;
var s = new Status();
var buffer = new Buffer();
c_api.TF_GraphToGraphDef(graph, buffer, s);
bool ret = TF_GetCode(s) == TF_OK;
EXPECT_EQ(TF_OK, TF_GetCode(s));
if (ret) graph_def = GraphDef.Parser.ParseFrom(buffer.Data);
buffer.Dispose();
s.Dispose();
return ret;
}
private void RunGraphsAndCompareOutputs(TF_Output[] grad_outputs, TF_Output[] expected_grad_outputs)
{
var csession = new CSession(graph_, s_);
var expected_csession = new CSession(expected_graph_, s_);
var grad_outputs_vec = new List();
grad_outputs_vec.AddRange(grad_outputs.Select(x => x.oper));
csession.SetOutputs(grad_outputs_vec);
csession.Run(s_);
ASSERT_EQ(TF_OK, TF_GetCode(s_));
var out0 = csession.output_tensor(0);
var out1 = csession.output_tensor(1);
var expected_grad_outputs_vec = new List();
expected_grad_outputs_vec.AddRange(expected_grad_outputs.Select(x => x.oper));
expected_csession.SetOutputs(expected_grad_outputs_vec);
expected_csession.Run(s_);
ASSERT_EQ(TF_OK, TF_GetCode(s_));
var expected_out0 = expected_csession.output_tensor(0);
var expected_out1 = expected_csession.output_tensor(1);
//CompareTensors(out0, expected_out0);
//CompareTensors(out1, expected_out1);
}
/*void TestGradientsError(bool grad_inputs_provided)
{
var inputs = new TF_Output[1];
var outputs = new TF_Output[1];
var grad_outputs = new TF_Output[1];
BuildErrorGraph(inputs, outputs);
AddGradients(grad_inputs_provided, nullptr, inputs, 1, outputs, 1,
grad_outputs);
string expected_msg =
"No gradient defined for op: TestOpWithNoGradient. Please see "
"https://www.tensorflow.org/code/"
"tensorflow/cc/gradients/README.md"
" for instructions on how to add C++ gradients.";
EXPECT_EQ(expected_msg, TF_Message(s_));
}*/
private void AddGradients(bool grad_inputs_provided, string prefix, TF_Output[] inputs, int ninputs,
TF_Output[] outputs, int noutputs, TF_Output[] grad_outputs)
{
if (grad_inputs_provided)
{
var grad_inputs = new TF_Output[1];
float[] grad_inputs_val = { 1.0f, 1.0f, 1.0f, 1.0f };
var grad_inputs_op = FloatConst2x2(graph_, s_, grad_inputs_val, "GradInputs");
grad_inputs[0] = new TF_Output(grad_inputs_op, 0);
c_api.TF_AddGradientsWithPrefix(graph_, prefix, outputs, noutputs, inputs,
ninputs, grad_inputs, s_, grad_outputs);
}
else
{
c_api.TF_AddGradientsWithPrefix(graph_, prefix, outputs, noutputs, inputs,
ninputs, null, s_, grad_outputs);
}
}
private void BuildSuccessGraph(TF_Output[] inputs, TF_Output[] outputs)
{
// Construct the following graph:
// |
// z|
// |
// MatMul
// / \
// ^ ^
// | |
// x| y|
// | |
// | |
// Const_0 Const_1
//
var const0_val = new float[] { 1.0f, 2.0f, 3.0f, 4.0f };
var const1_val = new float[] { 1.0f, 0.0f, 0.0f, 1.0f };
var const0 = FloatConst2x2(graph_, s_, const0_val, "Const_0");
var const1 = FloatConst2x2(graph_, s_, const1_val, "Const_1");
var matmul = MatMul(graph_, s_, const0, const1, "MatMul");
inputs[0] = new TF_Output(const0, 0);
inputs[1] = new TF_Output(const1, 0);
outputs[0] = new TF_Output(matmul, 0);
EXPECT_EQ(TF_OK, TF_GetCode(s_));
}
private void BuildExpectedGraph(bool grad_inputs_provided, TF_Output[] expected_grad_outputs)
{
// The expected graph looks like this if grad_inputs_provided.
// If grad_inputs_provided is false, Const_0 will be a OnesLike op.
// ^ ^
// dy| dx| // MatMul Gradient Graph
// | |
// MatMul_2 MatMul_1
// ^ ^ ^ ^
// | |----------| |
// | ^ |
// | dz| |
// | | |
// | Const_3 |
// | |
// | ^ |
// | z| | // MatMul Forward Graph
// | | |
// | MatMul |
// | / \ |
// | ^ ^ |
// | | | |
// |---x| y|----|
// | |
// | |
// Const_0 Const_1
//
float[] const0_val = { 1.0f, 2.0f, 3.0f, 4.0f };
float[] const1_val = { 1.0f, 0.0f, 0.0f, 1.0f };
var const0 = FloatConst2x2(expected_graph_, s_, const0_val, "Const_0");
var const1 = FloatConst2x2(expected_graph_, s_, const1_val, "Const_1");
var matmul = MatMul(expected_graph_, s_, const0, const1, "MatMul");
Operation const3;
if (grad_inputs_provided)
{
float[] const3_val = { 1.0f, 1.0f, 1.0f, 1.0f };
const3 = FloatConst2x2(expected_graph_, s_, const3_val, "GradInputs");
}
else
{
const3 = OnesLike(expected_graph_, s_, matmul, "gradients/OnesLike");
}
var matmul1 = MatMul(expected_graph_, s_, const3, const1,
"gradients/MatMul", false, true);
var matmul2 = MatMul(expected_graph_, s_, const0, const3,
"gradients/MatMul_1", true, false);
expected_grad_outputs[0] = new TF_Output(matmul1, 0);
expected_grad_outputs[1] = new TF_Output( matmul2, 0);
}
private Operation OnesLike(Graph graph, Status s, Operation input, string name)
{
var desc = TF_NewOperation(graph, "OnesLike", name);
TF_AddInput(desc, new TF_Output(input, 0));
var op = TF_FinishOperation(desc, s);
EXPECT_EQ(TF_OK, TF_GetCode(s));
return op;
}
private Operation FloatConst2x2(Graph graph, Status s, float[] values, string name)
{
var tensor = FloatTensor2x2(values);
var desc = TF_NewOperation(graph, "Const", name);
TF_SetAttrTensor(desc, "value", tensor, s);
if (TF_GetCode(s) != TF_OK) return IntPtr.Zero;
TF_SetAttrType(desc, "dtype", TF_FLOAT);
var op = TF_FinishOperation(desc, s);
EXPECT_EQ(TF_OK, TF_GetCode(s));
return op;
}
private Tensor FloatTensor2x2(float[] values)
{
//long[] dims = { 2, 2 };
//Tensor t = c_api.TF_AllocateTensor(TF_FLOAT, dims, 2, sizeof(float) * 4);
//Marshal.Copy(values, 0, t, 4);
Tensor t = new Tensor(new NDArray(values).reshape(2, 2));
return t;
}
private Operation MatMul(Graph graph, Status s, Operation l, Operation r, string name,
bool transpose_a = false, bool transpose_b = false)
{
var desc = TF_NewOperation(graph, "MatMul", name);
if (transpose_a)
{
TF_SetAttrBool(desc, "transpose_a", true);
}
if (transpose_b)
{
TF_SetAttrBool(desc, "transpose_b", true);
}
TF_AddInput(desc, new TF_Output(l, 0));
TF_AddInput(desc, new TF_Output(r, 0));
var op = TF_FinishOperation(desc, s);
EXPECT_EQ(TF_OK, TF_GetCode(s));
return op;
}
[TestMethod]
public void Gradients_GradInputs()
{
TestGradientsSuccess(true);
}
[TestMethod]
public void Gradients_NoGradInputs()
{
TestGradientsSuccess(false);
}
[TestMethod]
public void OpWithNoGradientRegistered_GradInputs()
{
//TestGradientsError(true);
}
[TestMethod]
public void OpWithNoGradientRegistered_NoGradInputs()
{
//TestGradientsError(false);
}
public void Dispose()
{
graph_.Dispose();
expected_graph_.Dispose();
s_.Dispose();
}
}
}