|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228 |
- 
-
- **Tensorflow.NET**是AI框架[TensorFlow](https://www.tensorflow.org/)在.NET平台上的实现,支持C#和F#,可以用来搭建深度学习模型并进行训练和推理,并内置了Numpy API,可以用来进行其它科学计算。
-
- Tensorflow.NET并非对于Python的简单封装,而是基于C API的pure C#实现,因此使用时无需额外的环境,可以很方便地用NuGet直接安装使用。并且dotnet团队提供的[ML.NET](https://github.com/dotnet/machinelearning)也依赖于Tensorflow.NET,支持调用Tensorflow.NET进行训练和推理,可以很方便地融入.NET生态。
-
- 与tensorflow相同,Tensorflow.NET也内置了Keras这一高级API,只要在安装Tensorflow.NET的同时安装Tensorflow.Keras就可以使用,Keras支持以模块化的方式调用模型,给模型的搭建提供了极大的便利。
-
- [](https://gitter.im/sci-sharp/community)
- [](https://ci.appveyor.com/project/Haiping-Chen/tensorflow-net)
- [](https://www.nuget.org/packages/TensorFlow.NET)
- [](https://tensorflownet.readthedocs.io/en/latest/?badge=latest)
- [](https://996.icu/#/en_US)
- [](https://mybinder.org/v2/gh/javiercp/BinderTF.NET/master?urlpath=lab)
-
- 中文 | [English](https://github.com/SciSharp/TensorFlow.NET#readme)
-
- *当前主分支与Tensorflow2.10版本相对应,支持Eager Mode,同时也支持v1的静态图。*
-
-
- 
-
- ## Why Tensorflow.NET?
-
- `SciSharp STACK`开源社区的目标是构建.NET平台下易用的科学计算库,而Tensorflow.NET就是其中最具代表性的仓库之一。在深度学习领域Python是主流,无论是初学者还是资深开发者,模型的搭建和训练都常常使用Python写就的AI框架,比如tensorflow。但在实际应用深度学习模型的时候,又可能希望用到.NET生态,亦或只是因为.NET是自己最熟悉的领域,这时候Tensorflow.NET就有显著的优点,因为它不仅可以和.NET生态很好地贴合,其API还使得开发者很容易将Python代码迁移过来。下面的对比就是很好的例子,Python代码和C#代码有着高度相似的API,这会使得迁移的时候无需做过多修改。
-
- 
-
- 除了高度相似的API外,Tensorflow.NET与tensorflow也已经打通数据通道,tensorflow训练并保存的模型可以在Tensorflow.NET中直接读取并继续训练或推理,反之Tensorflow.NET保存的模型也可以在tensorflow中读取,这大大方便了模型的训练和部署。
-
- 与其它类似的库比如[TensorFlowSharp](https://www.nuget.org/packages/TensorFlowSharp/)相比,Tensorflow.NET的实现更加完全,提供了更多的高级API,使用起来更为方便,更新也更加迅速。
-
-
- ## 文档
-
- 基本介绍与简单用例:[Tensorflow.NET Documents](https://scisharp.github.io/tensorflow-net-docs)
-
- 详细文档:[The Definitive Guide to Tensorflow.NET](https://tensorflownet.readthedocs.io/en/latest/FrontCover.html)
-
- 例程:[TensorFlow.NET Examples](https://github.com/SciSharp/TensorFlow.NET-Examples)
-
- 运行例程常见问题:[Tensorflow.NET FAQ](tensorflowlib/README.md)
-
- ## 安装与使用
-
- 安装可以在NuGet包管理器中搜索包名安装,也可以用下面命令行的方式。
-
- 安装分为两个部分,第一部分是Tensorflow.NET的主体:
-
- ```sh
- ### 安装Tensorflow.NET
- PM> Install-Package TensorFlow.NET
-
- ### 安装Tensorflow.Keras
- PM> Install-Package TensorFlow.Keras
- ```
-
- 第二部分是计算支持部分,只需要根据自己的设备和系统选择下面之一即可:
-
- ```
- ### CPU版本,支持Windows、Linux和Mac
- PM> Install-Package SciSharp.TensorFlow.Redist
-
- ### Windows下的GPU版本(需要安装CUDA和cuDNN)
- PM> Install-Package SciSharp.TensorFlow.Redist-Windows-GPU
-
- ### Linux下的GPU版本(需要安装CUDA和cuDNN)
- PM> Install-Package SciSharp.TensorFlow.Redist-Linux-GPU
- ```
-
- 下面给出两个简单的例子,更多例子可以在[TensorFlow.NET Examples]中查看。
-
- ### 简单例子(使用Eager Mode进行线性回归)
-
- ```csharp
- using static Tensorflow.Binding;
- using static Tensorflow.KerasApi;
- using Tensorflow;
- using Tensorflow.NumPy;
-
- // Parameters
- var training_steps = 1000;
- var learning_rate = 0.01f;
- var display_step = 100;
-
- // Sample data
- var X = np.array(3.3f, 4.4f, 5.5f, 6.71f, 6.93f, 4.168f, 9.779f, 6.182f, 7.59f, 2.167f,
- 7.042f, 10.791f, 5.313f, 7.997f, 5.654f, 9.27f, 3.1f);
- var Y = np.array(1.7f, 2.76f, 2.09f, 3.19f, 1.694f, 1.573f, 3.366f, 2.596f, 2.53f, 1.221f,
- 2.827f, 3.465f, 1.65f, 2.904f, 2.42f, 2.94f, 1.3f);
- var n_samples = X.shape[0];
-
- // We can set a fixed init value in order to demo
- var W = tf.Variable(-0.06f, name: "weight");
- var b = tf.Variable(-0.73f, name: "bias");
- var optimizer = keras.optimizers.SGD(learning_rate);
-
- // Run training for the given number of steps.
- foreach (var step in range(1, training_steps + 1))
- {
- // Run the optimization to update W and b values.
- // Wrap computation inside a GradientTape for automatic differentiation.
- using var g = tf.GradientTape();
- // Linear regression (Wx + b).
- var pred = W * X + b;
- // Mean square error.
- var loss = tf.reduce_sum(tf.pow(pred - Y, 2)) / (2 * n_samples);
- // should stop recording
- // Compute gradients.
- var gradients = g.gradient(loss, (W, b));
-
- // Update W and b following gradients.
- optimizer.apply_gradients(zip(gradients, (W, b)));
-
- if (step % display_step == 0)
- {
- pred = W * X + b;
- loss = tf.reduce_sum(tf.pow(pred - Y, 2)) / (2 * n_samples);
- print($"step: {step}, loss: {loss.numpy()}, W: {W.numpy()}, b: {b.numpy()}");
- }
- }
- ```
-
- 这一用例也可以在[Jupyter Notebook Example](https://github.com/SciSharp/SciSharpCube)进行运行.
-
- ### 简单例子(使用Keras搭建Resnet)
-
- ```csharp
- using static Tensorflow.Binding;
- using static Tensorflow.KerasApi;
- using Tensorflow;
- using Tensorflow.NumPy;
-
- var layers = keras.layers;
- // input layer
- var inputs = keras.Input(shape: (32, 32, 3), name: "img");
- // convolutional layer
- var x = layers.Conv2D(32, 3, activation: "relu").Apply(inputs);
- x = layers.Conv2D(64, 3, activation: "relu").Apply(x);
- var block_1_output = layers.MaxPooling2D(3).Apply(x);
- x = layers.Conv2D(64, 3, activation: "relu", padding: "same").Apply(block_1_output);
- x = layers.Conv2D(64, 3, activation: "relu", padding: "same").Apply(x);
- var block_2_output = layers.Add().Apply(new Tensors(x, block_1_output));
- x = layers.Conv2D(64, 3, activation: "relu", padding: "same").Apply(block_2_output);
- x = layers.Conv2D(64, 3, activation: "relu", padding: "same").Apply(x);
- var block_3_output = layers.Add().Apply(new Tensors(x, block_2_output));
- x = layers.Conv2D(64, 3, activation: "relu").Apply(block_3_output);
- x = layers.GlobalAveragePooling2D().Apply(x);
- x = layers.Dense(256, activation: "relu").Apply(x);
- x = layers.Dropout(0.5f).Apply(x);
- // output layer
- var outputs = layers.Dense(10).Apply(x);
- // build keras model
- var model = keras.Model(inputs, outputs, name: "toy_resnet");
- model.summary();
- // compile keras model in tensorflow static graph
- model.compile(optimizer: keras.optimizers.RMSprop(1e-3f),
- loss: keras.losses.SparseCategoricalCrossentropy(from_logits: true),
- metrics: new[] { "acc" });
- // prepare dataset
- var ((x_train, y_train), (x_test, y_test)) = keras.datasets.cifar10.load_data();
- // normalize the input
- x_train = x_train / 255.0f;
- // training
- model.fit(x_train[new Slice(0, 2000)], y_train[new Slice(0, 2000)],
- batch_size: 64,
- epochs: 10,
- validation_split: 0.2f);
- // save the model
- model.save("./toy_resnet_model");
- ```
-
- 此外,Tensorflow.NET也支持用F#搭建上述模型进行训练和推理。
-
- ## Tensorflow.NET版本对应关系
-
- | TensorFlow.NET Versions | tensorflow 1.14, cuda 10.0 | tensorflow 1.15, cuda 10.0 | tensorflow 2.3, cuda 10.1 | tensorflow 2.4, cuda 11 | tensorflow 2.7, cuda 11 |tensorflow 2.10, cuda 11 |
- | -------------------------- | ------------- | -------------- | ------------- | ------------- | ------------ | ------------ |
- | tf.net 0.10x, tf.keras 0.10 | | | | | | x |
- | tf.net 0.7x, tf.keras 0.7 | | | | | x | |
- | tf.net 0.4x, tf.keras 0.5 | | | | x | | |
- | tf.net 0.3x, tf.keras 0.4 | | | x | | | |
- | tf.net 0.2x | | x | x | | | |
- | tf.net 0.15 | x | x | | | | |
- | tf.net 0.14 | x | | | | | |
-
-
- ```
- tf.net 0.4x -> tf native 2.4
- tf.net 0.6x -> tf native 2.6
- tf.net 0.7x -> tf native 2.7
- tf.net 0.10x -> tf native 2.10
- ...
- ```
-
- 如果使用过程中发现有缺失的版本,请告知我们,谢谢!
-
- 请注意Tensorflow.NET与Tensorflow.Keras版本存在一一对应关系,请安装与Tensorflow.NET对应的Tensorflow.Keras版本。
-
- ## 参与我们的开发:
-
- 我们欢迎任何人的任何形式的贡献!无论是文档中的错误纠正,新特性提议,还是BUG修复等等,都会使得Tensorflow.NET项目越来越好,Tensorflow.NET的全体开发者也会积极帮助解决您提出的问题。
-
- 下面任何一种形式都可以帮助Tensorflow.NET越来越好:
-
- * Star和分享Tensorflow.NET项目
- * 为Tensorflow.NET添加更多的用例
- * 在issue中告知我们Tensorflow.NET目前相比tensorflow缺少的API或者没有对齐的特性
- * 在issue中提出Tensorflow.NET存在的BUG或者可以改进的地方
- * 在待办事项清单中选择一个进行或者解决某个issue
- * 帮助我们完善文档,这也十分重要
-
-
- ## 支持我们
- 我们推出了[TensorFlow.NET实战](https://item.jd.com/13441549.html)这本书,包含了Tensorflow.NET主要开发者编写的讲解与实战例程,欢迎您的购买,希望这本书可以给您带来帮助。
- <p float="left">
- <img src="https://user-images.githubusercontent.com/1705364/198852429-91741881-c196-401e-8e9e-2f8656196613.png" width="250" />
- <img src="https://user-images.githubusercontent.com/1705364/198852521-2f842043-3ace-49d2-8533-039c6a043a3f.png" width="260" />
- <img src="https://user-images.githubusercontent.com/1705364/198852721-54cd9e7e-9210-4931-a86c-77584b25b8e1.png" width="260" />
- </p>
-
- ## 联系我们
-
- 可以在 [Twitter](https://twitter.com/ScisharpStack), [Facebook](https://www.facebook.com/scisharp.stack.9), [Medium](https://medium.com/scisharp), [LinkedIn](https://www.linkedin.com/company/scisharp-stack/)中关注我们,也可以在[Gitter](https://gitter.im/sci-sharp/community)中与项目开发者以及其它使用者进行沟通交流,也欢迎在仓库中提起issue。
-
- TensorFlow.NET is a part of [SciSharp STACK](https://scisharp.github.io/SciSharp/)
- <br>
- <a href="http://scisharpstack.org"><img src="https://github.com/SciSharp/SciSharp/blob/master/art/scisharp-stack.png" width="391" height="100" /></a>
|