|
- # Copyright (c) Alibaba, Inc. and its affiliates.
- import unittest
-
- import numpy as np
-
- from modelscope.hub.snapshot_download import snapshot_download
- from modelscope.models import Model
- from modelscope.models.nlp import FeatureExtractionModel
- from modelscope.outputs import OutputKeys
- from modelscope.pipelines import pipeline
- from modelscope.pipelines.nlp import FeatureExtractionPipeline
- from modelscope.preprocessors import NLPPreprocessor
- from modelscope.utils.constant import Tasks
- from modelscope.utils.demo_utils import DemoCompatibilityCheck
- from modelscope.utils.test_utils import test_level
-
-
- class FeatureExtractionTaskModelTest(unittest.TestCase,
- DemoCompatibilityCheck):
-
- def setUp(self) -> None:
- self.task = Tasks.feature_extraction
- self.model_id = 'damo/pert_feature-extraction_base-test'
-
- sentence1 = '测试embedding'
-
- @unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
- def test_run_with_direct_file_download(self):
- cache_path = snapshot_download(self.model_id)
- tokenizer = NLPPreprocessor(cache_path, padding=False)
- model = FeatureExtractionModel.from_pretrained(self.model_id)
- pipeline1 = FeatureExtractionPipeline(model, preprocessor=tokenizer)
- pipeline2 = pipeline(
- Tasks.feature_extraction, model=model, preprocessor=tokenizer)
- result = pipeline1(input=self.sentence1)
-
- print(f'sentence1: {self.sentence1}\n'
- f'pipeline1:{np.shape(result[OutputKeys.TEXT_EMBEDDING])}')
- result = pipeline2(input=self.sentence1)
- print(f'sentence1: {self.sentence1}\n'
- f'pipeline1: {np.shape(result[OutputKeys.TEXT_EMBEDDING])}')
-
- @unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
- def test_run_with_model_from_modelhub(self):
- model = Model.from_pretrained(self.model_id)
- tokenizer = NLPPreprocessor(model.model_dir, padding=False)
- pipeline_ins = pipeline(
- task=Tasks.feature_extraction, model=model, preprocessor=tokenizer)
- result = pipeline_ins(input=self.sentence1)
- print(np.shape(result[OutputKeys.TEXT_EMBEDDING]))
-
- @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
- def test_run_with_model_name(self):
- pipeline_ins = pipeline(
- task=Tasks.feature_extraction, model=self.model_id)
- result = pipeline_ins(input=self.sentence1)
- print(np.shape(result[OutputKeys.TEXT_EMBEDDING]))
-
- @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
- def test_run_with_default_model(self):
- pipeline_ins = pipeline(task=Tasks.feature_extraction)
- result = pipeline_ins(input=self.sentence1)
- print(np.shape(result[OutputKeys.TEXT_EMBEDDING]))
-
-
- if __name__ == '__main__':
- unittest.main()
|