You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_feature_extraction.py 2.9 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667
  1. # Copyright (c) Alibaba, Inc. and its affiliates.
  2. import unittest
  3. import numpy as np
  4. from modelscope.hub.snapshot_download import snapshot_download
  5. from modelscope.models import Model
  6. from modelscope.models.nlp import FeatureExtractionModel
  7. from modelscope.outputs import OutputKeys
  8. from modelscope.pipelines import pipeline
  9. from modelscope.pipelines.nlp import FeatureExtractionPipeline
  10. from modelscope.preprocessors import NLPPreprocessor
  11. from modelscope.utils.constant import Tasks
  12. from modelscope.utils.demo_utils import DemoCompatibilityCheck
  13. from modelscope.utils.test_utils import test_level
  14. class FeatureExtractionTaskModelTest(unittest.TestCase,
  15. DemoCompatibilityCheck):
  16. def setUp(self) -> None:
  17. self.task = Tasks.feature_extraction
  18. self.model_id = 'damo/pert_feature-extraction_base-test'
  19. sentence1 = '测试embedding'
  20. @unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
  21. def test_run_with_direct_file_download(self):
  22. cache_path = snapshot_download(self.model_id)
  23. tokenizer = NLPPreprocessor(cache_path, padding=False)
  24. model = FeatureExtractionModel.from_pretrained(self.model_id)
  25. pipeline1 = FeatureExtractionPipeline(model, preprocessor=tokenizer)
  26. pipeline2 = pipeline(
  27. Tasks.feature_extraction, model=model, preprocessor=tokenizer)
  28. result = pipeline1(input=self.sentence1)
  29. print(f'sentence1: {self.sentence1}\n'
  30. f'pipeline1:{np.shape(result[OutputKeys.TEXT_EMBEDDING])}')
  31. result = pipeline2(input=self.sentence1)
  32. print(f'sentence1: {self.sentence1}\n'
  33. f'pipeline1: {np.shape(result[OutputKeys.TEXT_EMBEDDING])}')
  34. @unittest.skipUnless(test_level() >= 2, 'skip test in current test level')
  35. def test_run_with_model_from_modelhub(self):
  36. model = Model.from_pretrained(self.model_id)
  37. tokenizer = NLPPreprocessor(model.model_dir, padding=False)
  38. pipeline_ins = pipeline(
  39. task=Tasks.feature_extraction, model=model, preprocessor=tokenizer)
  40. result = pipeline_ins(input=self.sentence1)
  41. print(np.shape(result[OutputKeys.TEXT_EMBEDDING]))
  42. @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
  43. def test_run_with_model_name(self):
  44. pipeline_ins = pipeline(
  45. task=Tasks.feature_extraction, model=self.model_id)
  46. result = pipeline_ins(input=self.sentence1)
  47. print(np.shape(result[OutputKeys.TEXT_EMBEDDING]))
  48. @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
  49. def test_run_with_default_model(self):
  50. pipeline_ins = pipeline(task=Tasks.feature_extraction)
  51. result = pipeline_ins(input=self.sentence1)
  52. print(np.shape(result[OutputKeys.TEXT_EMBEDDING]))
  53. if __name__ == '__main__':
  54. unittest.main()