|
- # Copyright (c) Alibaba, Inc. and its affiliates.
-
- import unittest
-
- from modelscope.preprocessors import build_preprocessor, nlp
- from modelscope.utils.constant import Fields, InputFields
- from modelscope.utils.logger import get_logger
-
- logger = get_logger()
-
-
- class NLPPreprocessorTest(unittest.TestCase):
-
- def test_tokenize(self):
- cfg = dict(type='Tokenize', tokenizer_name='bert-base-cased')
- preprocessor = build_preprocessor(cfg, Fields.nlp)
- input = {
- InputFields.text:
- 'Do not meddle in the affairs of wizards, '
- 'for they are subtle and quick to anger.'
- }
- output = preprocessor(input)
- self.assertTrue(InputFields.text in output)
- self.assertEqual(output['input_ids'], [
- 101, 2091, 1136, 1143, 13002, 1107, 1103, 5707, 1104, 16678, 1116,
- 117, 1111, 1152, 1132, 11515, 1105, 3613, 1106, 4470, 119, 102
- ])
- self.assertEqual(
- output['token_type_ids'],
- [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
- self.assertEqual(
- output['attention_mask'],
- [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])
-
- def test_token_classification_tokenize(self):
- with self.subTest(tokenizer_type='bert'):
- cfg = dict(
- type='token-cls-tokenizer',
- model_dir='bert-base-cased',
- label2id={
- 'O': 0,
- 'B': 1,
- 'I': 2
- })
- preprocessor = build_preprocessor(cfg, Fields.nlp)
- input = 'Do not meddle in the affairs of wizards, ' \
- 'for they are subtle and quick to anger.'
- output = preprocessor(input)
- self.assertTrue(InputFields.text in output)
- self.assertEqual(output['input_ids'].tolist()[0], [
- 101, 2091, 1136, 1143, 13002, 1107, 1103, 5707, 1104, 16678,
- 1116, 117, 1111, 1152, 1132, 11515, 1105, 3613, 1106, 4470,
- 119, 102
- ])
- self.assertEqual(output['attention_mask'].tolist()[0], [
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1
- ])
- self.assertEqual(output['label_mask'].tolist()[0], [
- False, True, True, True, False, True, True, True, True, True,
- False, True, True, True, True, True, True, True, True, True,
- True, False
- ])
- self.assertEqual(output['offset_mapping'], [(0, 2), (3, 6),
- (7, 13), (14, 16),
- (17, 20), (21, 28),
- (29, 31), (32, 39),
- (39, 40), (41, 44),
- (45, 49), (50, 53),
- (54, 60), (61, 64),
- (65, 70), (71, 73),
- (74, 79), (79, 80)])
-
- with self.subTest(tokenizer_type='roberta'):
- cfg = dict(
- type='token-cls-tokenizer',
- model_dir='xlm-roberta-base',
- label2id={
- 'O': 0,
- 'B': 1,
- 'I': 2
- })
- preprocessor = build_preprocessor(cfg, Fields.nlp)
- input = 'Do not meddle in the affairs of wizards, ' \
- 'for they are subtle and quick to anger.'
- output = preprocessor(input)
- self.assertTrue(InputFields.text in output)
- self.assertEqual(output['input_ids'].tolist()[0], [
- 0, 984, 959, 128, 19298, 23, 70, 103086, 7, 111, 6, 44239,
- 99397, 4, 100, 1836, 621, 1614, 17991, 136, 63773, 47, 348, 56,
- 5, 2
- ])
- self.assertEqual(output['attention_mask'].tolist()[0], [
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
- 1, 1, 1, 1, 1
- ])
- self.assertEqual(output['label_mask'].tolist()[0], [
- False, True, True, True, False, True, True, True, False, True,
- True, False, False, False, True, True, True, True, False, True,
- True, True, True, False, False, False
- ])
- self.assertEqual(output['offset_mapping'], [(0, 2), (3, 6),
- (7, 13), (14, 16),
- (17, 20), (21, 28),
- (29, 31), (32, 40),
- (41, 44), (45, 49),
- (50, 53), (54, 60),
- (61, 64), (65, 70),
- (71, 73), (74, 80)])
-
-
- if __name__ == '__main__':
- unittest.main()
|