# Copyright (c) Alibaba, Inc. and its affiliates. import unittest from modelscope.preprocessors import build_preprocessor, nlp from modelscope.utils.constant import Fields, InputFields from modelscope.utils.logger import get_logger logger = get_logger() class NLPPreprocessorTest(unittest.TestCase): def test_tokenize(self): cfg = dict(type='Tokenize', tokenizer_name='bert-base-cased') preprocessor = build_preprocessor(cfg, Fields.nlp) input = { InputFields.text: 'Do not meddle in the affairs of wizards, ' 'for they are subtle and quick to anger.' } output = preprocessor(input) self.assertTrue(InputFields.text in output) self.assertEqual(output['input_ids'], [ 101, 2091, 1136, 1143, 13002, 1107, 1103, 5707, 1104, 16678, 1116, 117, 1111, 1152, 1132, 11515, 1105, 3613, 1106, 4470, 119, 102 ]) self.assertEqual( output['token_type_ids'], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) self.assertEqual( output['attention_mask'], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]) def test_token_classification_tokenize(self): with self.subTest(tokenizer_type='bert'): cfg = dict( type='token-cls-tokenizer', model_dir='bert-base-cased', label2id={ 'O': 0, 'B': 1, 'I': 2 }) preprocessor = build_preprocessor(cfg, Fields.nlp) input = 'Do not meddle in the affairs of wizards, ' \ 'for they are subtle and quick to anger.' output = preprocessor(input) self.assertTrue(InputFields.text in output) self.assertEqual(output['input_ids'].tolist()[0], [ 101, 2091, 1136, 1143, 13002, 1107, 1103, 5707, 1104, 16678, 1116, 117, 1111, 1152, 1132, 11515, 1105, 3613, 1106, 4470, 119, 102 ]) self.assertEqual(output['attention_mask'].tolist()[0], [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]) self.assertEqual(output['label_mask'].tolist()[0], [ False, True, True, True, False, True, True, True, True, True, False, True, True, True, True, True, True, True, True, True, True, False ]) self.assertEqual(output['offset_mapping'], [(0, 2), (3, 6), (7, 13), (14, 16), (17, 20), (21, 28), (29, 31), (32, 39), (39, 40), (41, 44), (45, 49), (50, 53), (54, 60), (61, 64), (65, 70), (71, 73), (74, 79), (79, 80)]) with self.subTest(tokenizer_type='roberta'): cfg = dict( type='token-cls-tokenizer', model_dir='xlm-roberta-base', label2id={ 'O': 0, 'B': 1, 'I': 2 }) preprocessor = build_preprocessor(cfg, Fields.nlp) input = 'Do not meddle in the affairs of wizards, ' \ 'for they are subtle and quick to anger.' output = preprocessor(input) self.assertTrue(InputFields.text in output) self.assertEqual(output['input_ids'].tolist()[0], [ 0, 984, 959, 128, 19298, 23, 70, 103086, 7, 111, 6, 44239, 99397, 4, 100, 1836, 621, 1614, 17991, 136, 63773, 47, 348, 56, 5, 2 ]) self.assertEqual(output['attention_mask'].tolist()[0], [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]) self.assertEqual(output['label_mask'].tolist()[0], [ False, True, True, True, False, True, True, True, False, True, True, False, False, False, True, True, True, True, False, True, True, True, True, False, False, False ]) self.assertEqual(output['offset_mapping'], [(0, 2), (3, 6), (7, 13), (14, 16), (17, 20), (21, 28), (29, 31), (32, 40), (41, 44), (45, 49), (50, 53), (54, 60), (61, 64), (65, 70), (71, 73), (74, 80)]) if __name__ == '__main__': unittest.main()