|
- # Copyright (c) Alibaba, Inc. and its affiliates.
- import os
- import shutil
- import unittest
-
- import json
-
- from modelscope.metainfo import Trainers
- from modelscope.msdatasets import MsDataset
- from modelscope.trainers import build_trainer
- from modelscope.utils.constant import DownloadMode, ModelFile
- from modelscope.utils.test_utils import test_level
-
-
- class TestOfaTrainer(unittest.TestCase):
-
- def setUp(self) -> None:
- self.finetune_cfg = \
- {'framework': 'pytorch',
- 'task': 'ocr-recognition',
- 'model': {'type': 'ofa',
- 'beam_search': {'beam_size': 5,
- 'max_len_b': 64,
- 'min_len': 1,
- 'no_repeat_ngram_size': 0},
- 'seed': 7,
- 'max_src_length': 128,
- 'language': 'zh',
- 'gen_type': 'generation',
- 'patch_image_size': 480,
- 'is_document': False,
- 'max_image_size': 480,
- 'imagenet_default_mean_and_std': False},
- 'pipeline': {'type': 'ofa-ocr-recognition'},
- 'dataset': {'column_map': {'text': 'label'}},
- 'train': {'work_dir': 'work/ckpts/recognition',
- # 'launcher': 'pytorch',
- 'max_epochs': 1,
- 'use_fp16': True,
- 'dataloader': {'batch_size_per_gpu': 4, 'workers_per_gpu': 0},
- 'lr_scheduler': {'name': 'polynomial_decay',
- 'warmup_proportion': 0.01,
- 'lr_end': 1e-07},
- 'lr_scheduler_hook': {'type': 'LrSchedulerHook', 'by_epoch': False},
- 'optimizer': {'type': 'AdamW', 'lr': 5e-05, 'weight_decay': 0.01},
- 'optimizer_hook': {'type': 'TorchAMPOptimizerHook',
- 'cumulative_iters': 1,
- 'grad_clip': {'max_norm': 1.0, 'norm_type': 2},
- 'loss_keys': 'loss'},
- 'criterion': {'name': 'AdjustLabelSmoothedCrossEntropyCriterion',
- 'constraint_range': None,
- 'drop_worst_after': 0,
- 'drop_worst_ratio': 0.0,
- 'ignore_eos': False,
- 'ignore_prefix_size': 0,
- 'label_smoothing': 0.1,
- 'reg_alpha': 1.0,
- 'report_accuracy': False,
- 'sample_patch_num': 196,
- 'sentence_avg': False,
- 'use_rdrop': True},
- 'hooks': [{'type': 'BestCkptSaverHook',
- 'metric_key': 'accuracy',
- 'interval': 100},
- {'type': 'TextLoggerHook', 'interval': 1},
- {'type': 'IterTimerHook'},
- {'type': 'EvaluationHook', 'by_epoch': True, 'interval': 1}]},
- 'evaluation': {'dataloader': {'batch_size_per_gpu': 4, 'workers_per_gpu': 0},
- 'metrics': [{'type': 'accuracy'}]},
- 'preprocessor': []}
-
- @unittest.skipUnless(test_level() >= 0, 'skip test in current test level')
- def test_trainer_std(self):
- WORKSPACE = './workspace/ckpts/recognition'
- os.makedirs(WORKSPACE, exist_ok=True)
- config_file = os.path.join(WORKSPACE, ModelFile.CONFIGURATION)
- with open(config_file, 'w') as writer:
- json.dump(self.finetune_cfg, writer)
-
- pretrained_model = 'damo/ofa_ocr-recognition_scene_base_zh'
- args = dict(
- model=pretrained_model,
- work_dir=WORKSPACE,
- train_dataset=MsDataset.load(
- 'ocr_fudanvi_zh',
- subset_name='scene',
- namespace='modelscope',
- split='train[800:900]',
- download_mode=DownloadMode.REUSE_DATASET_IF_EXISTS),
- eval_dataset=MsDataset.load(
- 'ocr_fudanvi_zh',
- subset_name='scene',
- namespace='modelscope',
- split='test[:20]',
- download_mode=DownloadMode.REUSE_DATASET_IF_EXISTS),
- cfg_file=config_file)
- trainer = build_trainer(name=Trainers.ofa, default_args=args)
- trainer.train()
-
- self.assertIn(
- ModelFile.TORCH_MODEL_BIN_FILE,
- os.listdir(os.path.join(WORKSPACE, ModelFile.TRAIN_OUTPUT_DIR)))
- shutil.rmtree(WORKSPACE)
-
-
- if __name__ == '__main__':
- unittest.main()
|