# Copyright (c) Alibaba, Inc. and its affiliates. import os import shutil import unittest import json from modelscope.metainfo import Trainers from modelscope.msdatasets import MsDataset from modelscope.trainers import build_trainer from modelscope.utils.constant import DownloadMode, ModelFile from modelscope.utils.test_utils import test_level class TestOfaTrainer(unittest.TestCase): def setUp(self) -> None: self.finetune_cfg = \ {'framework': 'pytorch', 'task': 'ocr-recognition', 'model': {'type': 'ofa', 'beam_search': {'beam_size': 5, 'max_len_b': 64, 'min_len': 1, 'no_repeat_ngram_size': 0}, 'seed': 7, 'max_src_length': 128, 'language': 'zh', 'gen_type': 'generation', 'patch_image_size': 480, 'is_document': False, 'max_image_size': 480, 'imagenet_default_mean_and_std': False}, 'pipeline': {'type': 'ofa-ocr-recognition'}, 'dataset': {'column_map': {'text': 'label'}}, 'train': {'work_dir': 'work/ckpts/recognition', # 'launcher': 'pytorch', 'max_epochs': 1, 'use_fp16': True, 'dataloader': {'batch_size_per_gpu': 4, 'workers_per_gpu': 0}, 'lr_scheduler': {'name': 'polynomial_decay', 'warmup_proportion': 0.01, 'lr_end': 1e-07}, 'lr_scheduler_hook': {'type': 'LrSchedulerHook', 'by_epoch': False}, 'optimizer': {'type': 'AdamW', 'lr': 5e-05, 'weight_decay': 0.01}, 'optimizer_hook': {'type': 'TorchAMPOptimizerHook', 'cumulative_iters': 1, 'grad_clip': {'max_norm': 1.0, 'norm_type': 2}, 'loss_keys': 'loss'}, 'criterion': {'name': 'AdjustLabelSmoothedCrossEntropyCriterion', 'constraint_range': None, 'drop_worst_after': 0, 'drop_worst_ratio': 0.0, 'ignore_eos': False, 'ignore_prefix_size': 0, 'label_smoothing': 0.1, 'reg_alpha': 1.0, 'report_accuracy': False, 'sample_patch_num': 196, 'sentence_avg': False, 'use_rdrop': True}, 'hooks': [{'type': 'BestCkptSaverHook', 'metric_key': 'accuracy', 'interval': 100}, {'type': 'TextLoggerHook', 'interval': 1}, {'type': 'IterTimerHook'}, {'type': 'EvaluationHook', 'by_epoch': True, 'interval': 1}]}, 'evaluation': {'dataloader': {'batch_size_per_gpu': 4, 'workers_per_gpu': 0}, 'metrics': [{'type': 'accuracy'}]}, 'preprocessor': []} @unittest.skipUnless(test_level() >= 0, 'skip test in current test level') def test_trainer_std(self): WORKSPACE = './workspace/ckpts/recognition' os.makedirs(WORKSPACE, exist_ok=True) config_file = os.path.join(WORKSPACE, ModelFile.CONFIGURATION) with open(config_file, 'w') as writer: json.dump(self.finetune_cfg, writer) pretrained_model = 'damo/ofa_ocr-recognition_scene_base_zh' args = dict( model=pretrained_model, work_dir=WORKSPACE, train_dataset=MsDataset.load( 'ocr_fudanvi_zh', subset_name='scene', namespace='modelscope', split='train[800:900]', download_mode=DownloadMode.REUSE_DATASET_IF_EXISTS), eval_dataset=MsDataset.load( 'ocr_fudanvi_zh', subset_name='scene', namespace='modelscope', split='test[:20]', download_mode=DownloadMode.REUSE_DATASET_IF_EXISTS), cfg_file=config_file) trainer = build_trainer(name=Trainers.ofa, default_args=args) trainer.train() self.assertIn( ModelFile.TORCH_MODEL_BIN_FILE, os.listdir(os.path.join(WORKSPACE, ModelFile.TRAIN_OUTPUT_DIR))) shutil.rmtree(WORKSPACE) if __name__ == '__main__': unittest.main()